These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 7272304)

  • 1. Electrical characteristics of the apical and basal-lateral membranes in the turtle bladder epithelial cell layer.
    Nagel W; Durham JH; Brodsky WA
    Biochim Biophys Acta; 1981 Aug; 646(1):77-87. PubMed ID: 7272304
    [No Abstract]   [Full Text] [Related]  

  • 2. Electrical properties of amphibian urinary bladder epithelia. III. The cell membrane resistances and the effect of amiloride.
    Frömter E; Gebler B
    Pflugers Arch; 1977 Oct; 371(1-2):99-108. PubMed ID: 563577
    [No Abstract]   [Full Text] [Related]  

  • 3. Interaction between apical and basolateral membranes during sodium transport across tight epithelia.
    Lewis SA; Wills NK
    Soc Gen Physiol Ser; 1981; 36():93-107. PubMed ID: 7280745
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of intracellular sodium and potassium iontophoresis on membrane potentials and resistances in toad urinary bladder.
    Narvarte J; Finn AL
    J Membr Biol; 1985; 84(1):1-7. PubMed ID: 3923199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of K+ transport in isolated turtle urinary bladder. Induction of active K+ secretion in a K+-absorbing epithelium.
    Husted RF; Steinmetz PR
    J Clin Invest; 1982 Oct; 70(4):832-4. PubMed ID: 6288771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ouabain on ion transport mechanisms in the isolated turtle bladder.
    Solinger RE; Gonzalez CF; Shamoo YE; Wyssbrod HR; Brodsky WA
    Am J Physiol; 1968 Jul; 215(1):249-61. PubMed ID: 4232288
    [No Abstract]   [Full Text] [Related]  

  • 7. Induction of reverse flow of Na+ through the active transport pathway in toad urinary bladder.
    Dawson DC; Al-Awquati Q
    Biochim Biophys Acta; 1978 Apr; 508(2):413-7. PubMed ID: 638149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive electrical properties of toad urinary bladder epithelium. Intercellular electrical coupling and transepithelial cellular and shunt conductances.
    Reuss L; Finn AL
    J Gen Physiol; 1974 Jul; 64(1):1-25. PubMed ID: 4209766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane electrical parameters in turtle bladder measured using impedance-analysis techniques.
    Clausen C; Dixon TE
    J Membr Biol; 1986; 92(1):9-19. PubMed ID: 3746893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular and shunt pathways in toad urinary bladder: control mechanisms.
    Finn AL; Davis CW; Narvarte J
    Soc Gen Physiol Ser; 1981; 36():61-78. PubMed ID: 7280744
    [No Abstract]   [Full Text] [Related]  

  • 11. The beginning of fluctuation analysis of epithelial ion transport.
    Lindemann B
    J Membr Biol; 1980; 54(1):1-11. PubMed ID: 7009875
    [No Abstract]   [Full Text] [Related]  

  • 12. Localization and characterization of transport-related elements in the plasma membrane of turtle bladder epithelial cells.
    Brodsky WA; Cabantchik ZI; Davidson N; Ehrenspeck G; Kinne-Saffran EM; Kinne R
    Biochim Biophys Acta; 1979 Oct; 556(3):490-508. PubMed ID: 226143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transepithelial potential difference in toad urinary bladder is not due to ionic diffusion.
    Finn AL
    Nature; 1974 Aug; 250(5466):495-6. PubMed ID: 4219950
    [No Abstract]   [Full Text] [Related]  

  • 14. Apical and basolateral membrane ionic channels in rabbit urinary bladder epithelium.
    Lewis SA; Hanrahan JW
    Pflugers Arch; 1985; 405 Suppl 1():S83-8. PubMed ID: 2418408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of active sodium transport on current-voltage relationship of toad bladder.
    Civan MM
    Am J Physiol; 1970 Jul; 219(1):234-45. PubMed ID: 5424849
    [No Abstract]   [Full Text] [Related]  

  • 16. Evidence for separate cellular origins of sodium and acid-base transport in the turtle bladder.
    Durham JH; Nagel W
    Am J Physiol; 1986 Apr; 250(4 Pt 1):C609-16. PubMed ID: 2421583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between the basolateral K+ and apical Na+ conductances in Necturus urinary bladder.
    Demarest JR; Finn AL
    J Gen Physiol; 1987 Apr; 89(4):563-80. PubMed ID: 2438372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical properties of amphibian urinary bladder epithelia. IV. The current-voltage relationship of the sodium channels in the apical cell membrane.
    Frömter E; Higgins JT; Gebler B
    Soc Gen Physiol Ser; 1981; 36():31-45. PubMed ID: 6269228
    [No Abstract]   [Full Text] [Related]  

  • 19. Localization of transport compartments in turtle urinary bladder.
    Buchinger P; Wienecke P; Rick R; Beck F; Dörge A; Thurau K
    Pflugers Arch; 1989 Jun; 414(2):208-15. PubMed ID: 2755774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ouabain and amiloride on Na pathways in turtle bladders.
    Wilczewski T; Brodsky WA
    Am J Physiol; 1975 Mar; 228(3):781-90. PubMed ID: 123125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.