BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 7272358)

  • 1. [Free energy linearity principle in enzymatic catalysis and thermodynamic principles of specificity].
    Kozlov LV
    Biokhimiia; 1981 Aug; 46(8):1369-75. PubMed ID: 7272358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Principle of free energies linearity in chymotrypsin catalysis].
    Kozlov LV
    Biokhimiia; 1979 Jan; 44(1):166-71. PubMed ID: 33727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Kinetics of alpha-chymotrypsin catalyzed hydrolysis in equilibrium. III. Rate constants for individual stages and thermodynamic parameters at different pH's].
    Antonov VK; Ginodman LM; Gurova AG
    Mol Biol (Mosk); 1977; 11(5):1160-6. PubMed ID: 36553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Nature of the intermediate compound formed during catalysis by pepsin].
    Kozlov LV
    Biokhimiia; 1979 Jan; 44(1):172-6. PubMed ID: 369621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The thermodynamic description of enzyme-catalyzed reactions. The linear relation between the reaction rate and the affinity.
    Rottenberg H
    Biophys J; 1973 Jun; 13(6):503-11. PubMed ID: 4714445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvation effects upon the thermodynamic substrate activity; correlation with the kinetics of enzyme catalyzed reactions. I. Effects of added reagents such as methanol upon alpha-chymotrypsin.
    Smith RR; Canady WJ
    Biophys Chem; 1992 Jun; 43(2):173-87. PubMed ID: 1498250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory of the kinetics of reactions catalyzed by enzymes attached to membranes.
    Kobayashi T; Laidler KJ
    Biotechnol Bioeng; 1974 Jan; 16(1):77-97. PubMed ID: 4813165
    [No Abstract]   [Full Text] [Related]  

  • 8. The specificity of chymotrypsin. A statistical analysis of hydrolysis data.
    Schellenberger V; Braune K; Hofmann HJ; Jakubke HD
    Eur J Biochem; 1991 Aug; 199(3):623-36. PubMed ID: 1868848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalysis and leaving group binding in anilide hydrolysis by chymotrypsin.
    Petkov D; Christova E; Stoineva I
    Biochim Biophys Acta; 1978 Nov; 527(1):131-41. PubMed ID: 718954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subsite interactions in chymotrypsin as reflected by acyl enzyme stability.
    Moffitt MJ; Means GE
    Biochem Biophys Res Commun; 1978 Aug; 83(4):1415-21. PubMed ID: 29631
    [No Abstract]   [Full Text] [Related]  

  • 11. Influence of solvent and water activity on kinetically controlled peptide synthesis.
    Clapés P; Valencia G; Adlercreutz P
    Enzyme Microb Technol; 1992 Jul; 14(7):575-80. PubMed ID: 1368428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of promotion on the kinetics of acetyl-alpha-chymotrysin solvolysis under the action of added nucleophilic agents].
    Klesov AA; Andreev VM; Berezin IV
    Biokhimiia; 1974; 39(6):1222-30. PubMed ID: 4142588
    [No Abstract]   [Full Text] [Related]  

  • 13. Enzymatic attack on immobilized substrates. 2. Diffusional limitations in the alpha-chymotrypsin-catalyzed hydrolysis of polyacrylamide-bound l-phenylalanine 4-nitroanilide.
    Fischer J; Lange L; Jakubke HD
    Eur J Biochem; 1978 Aug; 88(2):453-7. PubMed ID: 689030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Dynamic theory of enzymatic catalysis].
    Chizmadzhev IuA; Pastushenko VF; Bliumenfel'd LA
    Biofizika; 1976; 21(2):208-13. PubMed ID: 1268264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction of peptide aldehydes with serine proteases. Implications for the entropy changes associated with enzymatic catalysis.
    Thompson RC; Bauer CA
    Biochemistry; 1979 Apr; 18(8):1552-8. PubMed ID: 106885
    [No Abstract]   [Full Text] [Related]  

  • 16. [Globule size and the activation energy of an enzymatic process].
    Krishtalik LI
    Mol Biol (Mosk); 1979; 13(3):577-81. PubMed ID: 460203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Transitions between stationary states in a closed enzymatic system].
    Gol'dshteĭn BN; Belintsev BN; Vol'kenshteĭn MV
    Dokl Akad Nauk SSSR; 1979; 244(4):1005-8. PubMed ID: 761506
    [No Abstract]   [Full Text] [Related]  

  • 18. Forces, bond lengths, and reactivity: fundamental insight into the mechanism of enzyme catalysis.
    Tonge PJ; Carey PR
    Biochemistry; 1992 Sep; 31(38):9122-5. PubMed ID: 1390699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications for enzymic catalysis from free-energy reaction coordinate profiles.
    Fierke CA; Kuchta RD; Johnson KA; Benkovic SJ
    Cold Spring Harb Symp Quant Biol; 1987; 52():631-8. PubMed ID: 3331348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of thermodynamic nonideality on the kinetics of ester hydrolysis by alpha-chymotrypsin: a model system with preexistence of the isomerization equilibrium.
    Bergman DA; Shearwin KE; Winzor DJ
    Arch Biochem Biophys; 1989 Oct; 274(1):55-63. PubMed ID: 2774582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.