These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 7272358)

  • 21. Fairly marked enantioselectivity for the hydrolysis of amino acid esters by chemically modified enzymes.
    Yano Y; Shimada K; Okai J; Goto K; Matsumoto Y; Ueoka R
    J Org Chem; 2003 Feb; 68(4):1314-8. PubMed ID: 12585870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzymatic activity assay of D-hydantoinase by isothermal titration calorimetry. Determination of the thermodynamic activation parameters for the hydrolysis of several substrates.
    Andújar-Sánchez M; Las Heras-Vázquez FJ; Clemente-Jiménez JM; Martínez-Rodríguez S; Camara-Artigas A; Rodríguez-Vico F; Jara-Pérez V
    J Biochem Biophys Methods; 2006 Apr; 67(1):57-66. PubMed ID: 16497383
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatic reaction in a vesicular microreactor: peptaibol-facilitated substrate transport.
    Kropacheva TN; Raap J
    Chem Biodivers; 2007 Jun; 4(6):1388-94. PubMed ID: 17589871
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A self-stabilized model of the chymotrypsin catalytic pocket. The energy profile of the overall catalytic cycle.
    Hudáky P; Perczel A
    Proteins; 2006 Mar; 62(3):749-59. PubMed ID: 16358328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling of enzymatic reactions in vesicles: the case of alpha-chymotrypsin.
    Blocher M; Walde P; Dunn IJ
    Biotechnol Bioeng; 1999 Jan; 62(1):36-43. PubMed ID: 10099511
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing prime substrate binding sites of human dipeptidyl peptidase-IV using competitive substrate approach.
    Kopcho LM; Kim YB; Wang A; Liu MA; Kirby MS; Marcinkeviciene J
    Arch Biochem Biophys; 2005 Apr; 436(2):367-76. PubMed ID: 15797249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enzymatic transition states: thermodynamics, dynamics and analogue design.
    Schramm VL
    Arch Biochem Biophys; 2005 Jan; 433(1):13-26. PubMed ID: 15581562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel thermodynamic relationship based on Kramers Theory for studying enzyme kinetics under high viscosity.
    Siddiqui KS; Bokhari SA; Afzal AJ; Singh S
    IUBMB Life; 2004 Jul; 56(7):403-7. PubMed ID: 15545217
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-barrier hydrogen bonds and enzymatic catalysis.
    Cleland WW
    Arch Biochem Biophys; 2000 Oct; 382(1):1-5. PubMed ID: 11051090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamic and structural basis for transition-state stabilization in antibody-catalyzed hydrolysis.
    Oda M; Ito N; Tsumuraya T; Suzuki K; Sakakura M; Fujii I
    J Mol Biol; 2007 May; 369(1):198-209. PubMed ID: 17428500
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Anomalous temperature dependence of the activity of immobilized alpha-chymotrypsin preparations].
    Sigolaeva LV; Eremeev NL; Kazanskaia NF
    Bioorg Khim; 1994 Mar; 20(3):268-73. PubMed ID: 8166753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Bending fluctuations of the alpha-helix and the dynamics of enzyme-substrate interactions].
    Shaĭtan KV; Rubin AB
    Mol Biol (Mosk); 1983; 17(6):1280-96. PubMed ID: 6656757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamics of ligand binding and catalysis in human liver medium-chain acyl-CoA dehydrogenase: comparative studies involving normal and 3'-dephosphorylated C8-CoAs and wild-type and Asn191 --> Ala (N191A) mutant enzymes.
    Peterson KL; Peterson KM; Srivastava DK
    Biochemistry; 1998 Sep; 37(36):12659-71. PubMed ID: 9730839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature dependence of the thrombin-catalyzed proteolysis of prothrombin.
    Shi F; Winzor DJ; Jackson CM
    Biophys Chem; 2004 Jul; 110(1-2):1-13. PubMed ID: 15223139
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding the influence of temperature change and cosolvent addition on conversion rate of enzymatic suspension reactions based on regime analysis.
    Wolff A; Zhu L; Wong YW; Straathof AJ; Jongejan JA; Heijnen JJ
    Biotechnol Bioeng; 1999 Jan; 62(2):125-34. PubMed ID: 10099521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Kinetic-thermodynamic aspects of catalysis of polysaccharides by native end immobilized amylases].
    Kovaleva TA
    Biofizika; 2000; 45(3):439-44. PubMed ID: 10872055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A shifting specificity model for enzyme catalysis.
    Britt BM
    J Theor Biol; 1993 Sep; 164(2):181-90. PubMed ID: 8246515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzymatic reaction of silent substrates: kinetic theory and application to the serine protease chymotrypsin.
    Case A; Huskey WP; Stein RL
    Biochemistry; 2003 Apr; 42(16):4727-32. PubMed ID: 12705836
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Is aspartate 52 essential for catalysis by chicken egg white lysozyme? The role of natural substrate-assisted hydrolysis.
    Matsumura I; Kirsch JF
    Biochemistry; 1996 Feb; 35(6):1881-9. PubMed ID: 8639670
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The thermodynamic description of enzyme-catalyzed reactions. The linear relation between the reaction rate and the affinity.
    Rottenberg H
    Biophys J; 1973 Jun; 13(6):503-11. PubMed ID: 4714445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.