These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7274381)

  • 1. Aging of the erythrocyte. III. Cation content.
    Bartosz G; Swierczyński B; Gondko R
    Experientia; 1981 Jul; 37(7):723-4. PubMed ID: 7274381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cation distribution in mammalian red blood cells: interspecies and intraspecies relationships between cellular ATP, potassium, sodium and magnesium concentrations.
    Wheatley DN; Miseta A; Kellermayer M; Galambos C; Bogner P; Berènyi E; Cameron IL
    Physiol Chem Phys Med NMR; 1994; 26(1):111-8. PubMed ID: 7938220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erythrocyte cation transport activities as a function of cell age.
    Hentschel WM; Wu LL; Tobin GO; Anstall HB; Smith JB; Williams RR; Ash KO
    Clin Chim Acta; 1986 May; 157(1):33-43. PubMed ID: 2424641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between magnesium, potassium and sodium concentrations in lymphocytes and erythrocytes from normal subjects.
    Girardin E; Paunier L
    Magnesium; 1985; 4(4):188-92. PubMed ID: 4079464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human red cell content of cyclic nucleotides and cations upon beta-adrenergic blockade.
    Ronquist G; Frithz G; Hedström M; Ericsson P
    Ups J Med Sci; 1978; 83(2):85-8. PubMed ID: 26998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of adrenalectomy upon rat erythrocyte Na+ and K+ content, Na+ efflux rate and Mg2+- and (Na+ plus K+)-Mg2+-ATPase activities.
    Radcliffe MA
    Biochim Biophys Acta; 1974 Mar; 339(3):303-10. PubMed ID: 4276128
    [No Abstract]   [Full Text] [Related]  

  • 7. Changes in erythrocyte contents of potassium, sodium and magnesium and Na, K-pump activity after the administration of potassium and magnesium salts.
    Sriboonlue P; Jaipakdee S; Jirakulsomchok D; Mairiang E; Tosukhowong P; Prasongwatana V; Savok S
    J Med Assoc Thai; 2004 Dec; 87(12):1506-12. PubMed ID: 15822549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Transport of monovalent cations into erythrocytes of rabbits with experimental hypercholesterolemia: correlation with plasma cholesterol].
    Makarov VL; Kuznetsov SR; Churina SK; Sokolova AI
    Biokhimiia; 1994 Jul; 59(7):1011-9. PubMed ID: 7948411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between cellular ATP, potassium, sodium and magnesium concentrations in mammalian and avian erythrocytes.
    Miseta A; Bogner P; Berényi E; Kellermayer M; Galambos C; Wheatley DN; Cameron IL
    Biochim Biophys Acta; 1993 Jan; 1175(2):133-9. PubMed ID: 8418892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Behavior of erythrocytic cations in Cooley's disease].
    Gemelli M
    Minerva Pediatr; 1973 Feb; 25(4):154-6. PubMed ID: 4696234
    [No Abstract]   [Full Text] [Related]  

  • 11. Alterations in cellular sodium, potassium, calcium, magnesium, copper and zinc levels during the development and maturation of erythrocytes in the rabbit.
    Valberg LS; Card RT; Paulson EJ; Szivek J
    Br J Haematol; 1967 Jan; 13(1):115-25. PubMed ID: 6018208
    [No Abstract]   [Full Text] [Related]  

  • 12. Erythrocyte cation transport systems and membrane lipids in insulin-dependent diabetes.
    Lijnen P; Fenyvesi A; Bex M; Bouillon R; Amery A
    Am J Hypertens; 1993 Sep; 6(9):763-70. PubMed ID: 8110430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell.
    Wiley JS; Cooper RA
    J Clin Invest; 1974 Mar; 53(3):745-55. PubMed ID: 4812437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of the distribution of the major cations in blood and of erythrocyte metabolism in relation to cold shock and dilution.
    Quinn PJ; White IG
    Res Vet Sci; 1967 Jan; 8(1):58-64. PubMed ID: 6067706
    [No Abstract]   [Full Text] [Related]  

  • 15. Selected ionic and metabolic characteristics of human red cell populations separated on stractan density gradients.
    Clark MR
    Prog Clin Biol Res; 1985; 195():381-8. PubMed ID: 4059276
    [No Abstract]   [Full Text] [Related]  

  • 16. Electrolytes and NA(+)-K(+)-ATPase: potential risk factors for the development of diabetic nephropathy.
    Shahid SM; Mahboob T
    Pak J Pharm Sci; 2008 Apr; 21(2):172-9. PubMed ID: 18390448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The monovalent cation "leak" transport in human erythrocytes: an electroneutral exchange process.
    Richter S; Hamann J; Kummerow D; Bernhardt I
    Biophys J; 1997 Aug; 73(2):733-45. PubMed ID: 9251790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erythrocyte cation permeability induced by mechanical stress: a model for sickle cell cation loss.
    Johnson RM; Gannon SA
    Am J Physiol; 1990 Nov; 259(5 Pt 1):C746-51. PubMed ID: 2240192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Contents of monovalent cations and ATP in erythrocytes of marine fishes in experimental hypoxia].
    Soldatov AA; Parfenova IA; Novitskaia VN
    Ukr Biokhim Zh (1999); 2010; 82(2):36-41. PubMed ID: 20684243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deoxygenation-induced cation fluxes in sickle cells: relationship between net potassium efflux and net sodium influx.
    Joiner CH; Dew A; Ge DL
    Blood Cells; 1988; 13(3):339-58. PubMed ID: 3382745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.