These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 7274844)

  • 21. Thiosulphate conversion in a methane and acetate fed membrane bioreactor.
    Suarez-Zuluaga DA; Timmers PH; Plugge CM; Stams AJ; Buisman CJ; Weijma J
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2467-78. PubMed ID: 26423279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibitory effects of sulphur compounds, copper and tungsten on nitrate reduction by mixed rumen micro-organisms.
    Takahashi J; Johchi N; Fujita H
    Br J Nutr; 1989 May; 61(3):741-8. PubMed ID: 2758022
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pathways of assimilatory sulphate reduction in plants and microorganisms.
    Schiff JA
    Ciba Found Symp; 1979; (72):49-69. PubMed ID: 398767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sulphate reducing activity detected in soil samples from Antarctica, Ecology Glacier Forefield, King George Island.
    Wolicka D; Zdanowski MK; Żmuda-Baranowska MJ; Poszytek A; Grzesiak J
    Pol J Microbiol; 2014; 63(4):443-50. PubMed ID: 25804064
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SULPHUR NUTRITION OF TWO STRAINS OF THE YEAST, DEBARYOMYCES KLOECKERI, ISOLATED FROM SUBANTARCTIC SOIL.
    SKERMAN TM; SINGLETON RJ
    Can J Microbiol; 1964 Jun; 10():397-406. PubMed ID: 14187009
    [No Abstract]   [Full Text] [Related]  

  • 26. [Auxotrophy and utilization of oxidized and reduced mineral sulfur forms by Brevundimonas diminuta strains].
    Smirnov VV; Kiprianova EA; Babich LV
    Mikrobiol Z; 2001; 63(5):27-33. PubMed ID: 11785417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The speciation of soluble sulphur compounds in bacterial culture fluids by X-ray absorption near edge structure spectroscopy.
    Franz B; Lichtenberg H; Hormes J; Dahl C; Prange A
    Environ Technol; 2009 Nov; 30(12):1281-9. PubMed ID: 19950470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of sulfur salts on selenium poisoning in the rat.
    Halverson AW; Guss PL; Olson OE
    J Nutr; 1962 Aug; 77(4):459-64. PubMed ID: 13904021
    [No Abstract]   [Full Text] [Related]  

  • 29. Soil microflora of the rhizosphere of plants from several habitats in the botanical garden in Poznań.
    Golebiowska J; Pedziwilk Z
    Acta Microbiol Pol B; 1975; 7(4):211-7. PubMed ID: 5857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum.
    Hensen D; Sperling D; Trüper HG; Brune DC; Dahl C
    Mol Microbiol; 2006 Nov; 62(3):794-810. PubMed ID: 16995898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [35S]thiosulphate oxidation by rat liver mitochondria in the presence of glutathione.
    Koj A; Frendo J; Janik Z
    Biochem J; 1967 Jun; 103(3):791-5. PubMed ID: 6049402
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Persistence of captan and its effects on microflora, respiration, and nitrification of a forest nursery soil.
    Agnihotri VP
    Can J Microbiol; 1971 Mar; 17(3):377-83. PubMed ID: 5551317
    [No Abstract]   [Full Text] [Related]  

  • 33. Sulphur oxidation by a Streptomyces sp. growing in a carbon-deficient medium and autoclaved soil.
    Wainwright M; Skiba U; Betts RP
    Arch Microbiol; 1984 Oct; 139(2-3):272-6. PubMed ID: 6517658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The bacteria of the sulphur cycle.
    Pfennig N; Widdel F
    Philos Trans R Soc Lond B Biol Sci; 1982 Sep; 298(1093):433-41. PubMed ID: 6127734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane-bound thiosulphate:quinone oxidoreductase.
    Müller FH; Bandeiras TM; Urich T; Teixeira M; Gomes CM; Kletzin A
    Mol Microbiol; 2004 Aug; 53(4):1147-60. PubMed ID: 15306018
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial changes in clover rhizosphere after foliar and soil application of cobalt.
    Vraný J
    Folia Microbiol (Praha); 1978; 23(3):236-42. PubMed ID: 669491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Variation of rhizosphere environmental factors of sugarbeet seedlings under Na
    Guo J; Li CF; Liu L; Sang LM; Chen M; Xu Y; Gai ZJ; Wang YB
    Ying Yong Sheng Tai Xue Bao; 2016 Mar; 27(3):904-910. PubMed ID: 29726197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution and diversity of bacterial communities and sulphate-reducing bacteria in a paddy soil irrigated with acid mine drainage.
    Wang H; Guo CL; Yang CF; Lu GN; Chen MQ; Dang Z
    J Appl Microbiol; 2016 Jul; 121(1):196-206. PubMed ID: 27005987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidation of thiosulphate and sulphite by Thiobacillus neapolitanus.
    Skłodowska A
    Acta Microbiol Pol; 1985; 34(3-4):271-6. PubMed ID: 2421543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis.
    Tourna M; Maclean P; Condron L; O'Callaghan M; Wakelin SA
    FEMS Microbiol Ecol; 2014 Jun; 88(3):538-49. PubMed ID: 24646185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.