BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 7275928)

  • 1. Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus.
    Sprague SG; Staehelin LA; DiBartolomeis MJ; Fuller RC
    J Bacteriol; 1981 Sep; 147(3):1021-31. PubMed ID: 7275928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiaerobic induction of bacteriochlorophyll synthesis in the green bacterium Chloroflexus aurantiacus.
    Sprague SG; Staehelin LA; Fuller RC
    J Bacteriol; 1981 Sep; 147(3):1032-9. PubMed ID: 7275929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of cytoplasmic membranes and chlorosomes from the green bacterium Chloroflexus aurantiacus.
    Feick RG; Fitzpatrick M; Fuller RC
    J Bacteriol; 1982 May; 150(2):905-15. PubMed ID: 7068536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola.
    Staehelin LA; Golecki JR; Drews G
    Biochim Biophys Acta; 1980 Jan; 589(1):30-45. PubMed ID: 7356977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Q-band hyperchromism and B-band hypochromism of bacteriochlorophyll c as a tool for investigation of the oligomeric structure of chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus.
    Yakovlev AG; Taisova AS; Fetisova ZG
    Photosynth Res; 2020 Dec; 146(1-3):95-108. PubMed ID: 31939070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of chlorosomes from the green filamentous bacterium Chloroflexus aurantiacus.
    Psencík J; Collins AM; Liljeroos L; Torkkeli M; Laurinmäki P; Ansink HM; Ikonen TP; Serimaa RE; Blankenship RE; Tuma R; Butcher SJ
    J Bacteriol; 2009 Nov; 191(21):6701-8. PubMed ID: 19717605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of blue-green light by chlorosomes from the photosynthetic bacterium Chloroflexus aurantiacus: Ultrafast excitation energy conversion and transfer.
    Yakovlev AG; Taisova AS; Fetisova ZG
    Biochim Biophys Acta Bioenerg; 2021 Jun; 1862(6):148396. PubMed ID: 33581107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmission electron microscopic study on supramolecular nanostructures of bacteriochlorophyll self-aggregates in chlorosomes of green photosynthetic bacteria.
    Saga Y; Tamiaki H
    J Biosci Bioeng; 2006 Aug; 102(2):118-23. PubMed ID: 17027873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Femtosecond Exciton Relaxation in Chlorosomes of the Photosynthetic Green Bacterium Chloroflexus aurantiacus.
    Yakovlev AG; Taisova AS; Fetisova ZG
    Biochemistry (Mosc); 2023 May; 88(5):704-715. PubMed ID: 37331716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarized fluorescence of aggregated bacteriochlorophyll c and baseplate bacteriochlorophyll a in single chlorosomes isolated from Chloroflexus aurantiacus.
    Shibata Y; Saga Y; Tamiaki H; Itoh S
    Biochemistry; 2007 Jun; 46(23):7062-8. PubMed ID: 17503774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacteriochlorophyll organization and energy transfer kinetics in chlorosomes from Chloroflexus aurantiacus depend on the light regime during growth.
    Ma YZ; Cox RP; Gillbro T; Miller M
    Photosynth Res; 1996 Feb; 47(2):157-65. PubMed ID: 24301823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct counting of submicrometer-sized photosynthetic apparatus dispersed in medium at cryogenic temperature by confocal laser fluorescence microscopy: estimation of the number of bacteriochlorophyll c in single light-harvesting antenna complexes chlorosomes of green photosynthetic bacteria.
    Saga Y; Shibata Y; Itoh S; Tamiaki H
    J Phys Chem B; 2007 Nov; 111(43):12605-9. PubMed ID: 17918876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Frequency Oscillations of Bacteriochlorophyll Oligomers in Chlorosomes of Photosynthetic Green Bacteria.
    Yakovlev AG; Taisova AS; Fetisova ZG
    Biochemistry (Mosc); 2023 Dec; 88(12):2084-2093. PubMed ID: 38462452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerobic Production of Bacteriochlorophylls in the Filamentous Anoxygenic Photosynthetic Bacterium, Chloroflexus aurantiacus in the Light.
    Izaki K; Haruta S
    Microbes Environ; 2020; 35(2):. PubMed ID: 32418929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of esterified bacteriochlorophylls on the biogenesis of chlorosomes in Chloroflexus aurantiacus.
    Wang Y; Freund DM; Magdaong NM; Urban VS; Frank HA; Hegeman AD; Tang JK
    Photosynth Res; 2014 Oct; 122(1):69-86. PubMed ID: 24880610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural differences in chlorosomes from Chloroflexus aurantiacus grown under different conditions support the BChl c-binding function of the 5.7 kDa polypeptide.
    Lehmann RP; Brunisholz RA; Zuber H
    FEBS Lett; 1994 Apr; 342(3):319-24. PubMed ID: 8150092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quenching of bacteriochlorophyll
    Yakovlev AG; Taisova AS
    Phys Chem Chem Phys; 2024 Mar; 26(11):8815-8823. PubMed ID: 38421198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Stark effect in β and γ carotenes induced by photoexcitation of bacteriochlorophyll c in chlorosomes from Chloroflexus aurantiacus.
    Yakovlev AG; Taisova AS; Fetisova ZG
    Photosynth Res; 2022 Dec; 154(3):291-302. PubMed ID: 36115930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The functional role of protein in the organization of bacteriochlorophyll c in chlorosomes of Chloroflexus aurantiacus.
    Niedermeier G; Scheer H; Feick RG
    Eur J Biochem; 1992 Mar; 204(2):685-92. PubMed ID: 1541281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variability of aggregation extent of light-harvesting pigments in peripheral antenna of Chloroflexus aurantiacus.
    Yakovlev A; Taisova A; Arutyunyan A; Shuvalov V; Fetisova Z
    Photosynth Res; 2017 Sep; 133(1-3):343-356. PubMed ID: 28361448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.