BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 7275946)

  • 1. D-lactate dehydrogenase of Desulfovibrio vulgaris.
    Ogata M; Arihara K; Yagi T
    J Biochem; 1981 May; 89(5):1423-31. PubMed ID: 7275946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyruvate dehydrogenase and the path of lactate degradation in Desulfovibrio vulgaris Miyazaki F.
    Ogata M; Yagi T
    J Biochem; 1986 Aug; 100(2):311-8. PubMed ID: 3023304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and properties of cytochrome c-553, an electron acceptor for formate dehydrogenase of Desulfovibrio vulgaris, Miyazaki.
    Yagi T
    Biochim Biophys Acta; 1979 Oct; 548(1):96-105. PubMed ID: 226135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid sequence and function of rubredoxin from Desulfovibrio vulgaris Miyazaki.
    Shimizu F; Ogata M; Yagi T; Wakabayashi S; Matsubara H
    Biochimie; 1989; 71(11-12):1171-7. PubMed ID: 2561345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of periplasmic hydrogenase from Desulfovibrio vulgaris Miyazaki K.
    Aketagawa J; Kobayashi K; Ishimoto M
    J Biochem; 1983 Mar; 93(3):755-62. PubMed ID: 6874662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reductive precipitation of sulfate and soluble Fe(III) by Desulfovibrio vulgaris: Electron donor regulates intracellular electron flow and nano-FeS crystallization.
    Zhou C; Zhou Y; Rittmann BE
    Water Res; 2017 Aug; 119():91-101. PubMed ID: 28436827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periplasmic cytochrome c3 of Desulfovibrio vulgaris is directly involved in H2-mediated metal but not sulfate reduction.
    Elias DA; Suflita JM; McInerney MJ; Krumholz LR
    Appl Environ Microbiol; 2004 Jan; 70(1):413-20. PubMed ID: 14711670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and properties of thiosulfate reductase from Desulfovibrio vulgaris, Miyazaki F.
    Aketagawa J; Kobayashi K; Ishimoto M
    J Biochem; 1985 Apr; 97(4):1025-32. PubMed ID: 2993256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetics and molecular biology of the electron flow for sulfate respiration in desulfovibrio.
    Keller KL; Wall JD
    Front Microbiol; 2011; 2():135. PubMed ID: 21747813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microcalorimetric studies of the growth of sulfate-reducing bacteria: energetics of Desulfovibrio vulgaris growth.
    Traore AS; Hatchikian CE; Belaich JP; Le Gall J
    J Bacteriol; 1981 Jan; 145(1):191-9. PubMed ID: 7462143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of the amount of periplasmic hydrogenase in Desulfovibrio vulgaris (Hildenborough) with antisense RNA: direct evidence for an important role of this hydrogenase in lactate metabolism.
    van den Berg WA; van Dongen WM; Veeger C
    J Bacteriol; 1991 Jun; 173(12):3688-94. PubMed ID: 1711025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some physical and kinetic properties of adenylyl sulfate reductase from Desulfovibrio vulgaris.
    Bramlett RN; Peck HD
    J Biol Chem; 1975 Apr; 250(8):2979-86. PubMed ID: 235533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a tungsten-stimulated aldehyde dehydrogenase activity of Desulfovibrio simplex that oxidizes aliphatic and aromatic aldehydes with flavins as coenzymes.
    Zellner G; Jargon A
    Arch Microbiol; 1997 Dec; 168(6):480-5. PubMed ID: 9385139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization.
    Jiang T; Guo X; Yan J; Zhang Y; Wang Y; Zhang M; Sheng B; Ma C; Xu P; Gao C
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28847921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterization of ferredoxin from Desulfovibrio vulgaris Miyazaki.
    Ogata M; Kondo S; Okawara N; Yagi T
    J Biochem; 1988 Jan; 103(1):121-5. PubMed ID: 3360752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sulfate-reducing bacterium that can detoxify U(VI) and obtain energy via nitrate reduction.
    Pietzsch K; Babel W
    J Basic Microbiol; 2003; 43(4):348-61. PubMed ID: 12872316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of the interdomain hinge in intramolecular electron transfer in flavocytochrome b2.
    White P; Manson FD; Brunt CE; Chapman SK; Reid GA
    Biochem J; 1993 Apr; 291 ( Pt 1)(Pt 1):89-94. PubMed ID: 8385941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and properties of the flavoenzyme D-lactate dehydrogenase from Megasphaera elsdenii.
    Olson ST; Massey V
    Biochemistry; 1979 Oct; 18(21):4714-24. PubMed ID: 497162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. D-Lactate dehydrogenase of Peptostreptococcus elsdenii.
    Brockman HL; Wood WA
    J Bacteriol; 1975 Dec; 124(3):1454-61. PubMed ID: 368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.