These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 7275969)
1. Functional organization of the large ribosomal subunit of Bacillus stearothermophilus. Auron PE; Fahnestock SR J Biol Chem; 1981 Oct; 256(19):10105-10. PubMed ID: 7275969 [TBL] [Abstract][Full Text] [Related]
2. Reconstitution of Bacillus stearothermophilus 50 S ribosomal subunits from purified molecular components. Cohlberg JA; Nomura M J Biol Chem; 1976 Jan; 251(1):209-21. PubMed ID: 172511 [TBL] [Abstract][Full Text] [Related]
3. Evidence of the involvement of a 50S ribosomal protein in several active sites. Fahnestock SR Biochemistry; 1975 Dec; 14(24):5321-7. PubMed ID: 52 [TBL] [Abstract][Full Text] [Related]
4. Surface topography of the Bacillus stearothermophilus ribosome. Miller HM; Friedman SM Mol Gen Genet; 1976 Mar; 144(3):273-80. PubMed ID: 1272247 [TBL] [Abstract][Full Text] [Related]
5. Chemical modification studies of a protein at the peptidyltransferase site of the Bacillus stearothermophilus ribosome. The 50 S ribosomal subunit is a highly integrated functional unit. Auron PE; Erdelsky KJ; Fahnestock SR J Biol Chem; 1978 Oct; 253(19):6893-900. PubMed ID: 690131 [No Abstract] [Full Text] [Related]
6. Monoclonal antibodies to Escherichia coli ribosomal proteins L9 and L10. Effects on ribosome function and localization of L9 on the surface of the 50 S ribosomal subunit. Nag B; Akella SS; Cann PA; Tewari DS; Glitz DG; Traut RR J Biol Chem; 1991 Nov; 266(33):22129-35. PubMed ID: 1939233 [TBL] [Abstract][Full Text] [Related]
7. A comparative study of the 50S ribosomal subunit and several 50S subparticles in EF-T-and EF-G-dependent activities. Sander G; Marsh RC; Voigt J; Parmeggiani A Biochemistry; 1975 May; 14(9):1805-14. PubMed ID: 1092342 [TBL] [Abstract][Full Text] [Related]
15. Effects of two photoreactive spermine analogues on peptide bond formation and their application for labeling proteins in Escherichia coli functional ribosomal complexes. Amarantos I; Xaplanteri MA; Choli-Papadopoulou T; Kalpaxis DL Biochemistry; 2001 Jun; 40(25):7641-50. PubMed ID: 11412118 [TBL] [Abstract][Full Text] [Related]
16. Immunoblotting analysis of protein-protein crosslinks within the 50S ribosomal subunit of Escherichia coli. A study using dimethylsuberimidate as crosslinking reagent. Redl B; Walleczek J; Stöffler-Meilicke M; Stöffler G Eur J Biochem; 1989 May; 181(2):351-6. PubMed ID: 2653827 [TBL] [Abstract][Full Text] [Related]
17. Minimal set of ribosomal components for reconstitution of the peptidyltransferase activity. Schulze H; Nierhaus KH EMBO J; 1982; 1(5):609-13. PubMed ID: 6765232 [TBL] [Abstract][Full Text] [Related]
18. [Modifications of ribosomes from rat liver with alkylating derivatives of tRNA]. Vlasov VV; Vesterman P Mol Biol (Mosk); 1976; 10(2):670-4. PubMed ID: 1053050 [TBL] [Abstract][Full Text] [Related]
19. The peptidyltransferase centre of the Escherichia coli ribosome. The histidine of protein L16 affects the reconstitution and control of the active centre but is not essential for release-factor-mediated peptidyl-tRNA hydrolysis and peptide bond formation. Tate WP; Sumpter VG; Trotman CN; Herold M; Nierhaus KH Eur J Biochem; 1987 Jun; 165(2):403-8. PubMed ID: 3297687 [TBL] [Abstract][Full Text] [Related]
20. Binding of Escherichia coli ribosomal proteins to 23S RNA under reconstitution conditions for the 50S subunit. Marquardt O; Roth HE; Wystup G; Nierhaus KH Nucleic Acids Res; 1979 Aug; 6(11):3641-50. PubMed ID: 386275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]