BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 7276573)

  • 1. A comparison of the interactions of the mitogenic and nonmitogenic lima bean lectins with human lymphocytes.
    Munske GR; Pandolfino ER; Magnuson JA
    J Immunol; 1981 Oct; 127(4):1607-10. PubMed ID: 7276573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of peanut agglutinin with human lymphocytes. Binding properties and topology of the receptor site.
    Newman RA; Uhlenbruck G; Schumacher K; Mil AV; Karduck D
    Z Immunitatsforsch Immunobiol; 1978 Sep; 154(5):451-62. PubMed ID: 726549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of nonmitogenic and mitogenic lectins with T lymphocytes: association of cellular receptor sites.
    Hellström U; Dillner ML; Hammarström S; Perlmann P
    Scand J Immunol; 1976; 5(1-2):45-54. PubMed ID: 772792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitogenic lectins bind to the antigen receptor on human lymphocytes.
    Chilson OP; Kelly-Chilson AE
    Eur J Immunol; 1989 Feb; 19(2):389-96. PubMed ID: 2703017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the cell-binding characteristics of the mitogenic and nonmitogenic lectins from lima beans.
    Pandolfino ER; Namen AE; Munske GR; Magnuson JA
    J Biol Chem; 1983 Aug; 258(15):9203-7. PubMed ID: 6874685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of lectins and monoclonal antibodies with human mononuclear cells. I. Specific inhibition of OKT4 and OKT8 binding by Ricinus communis agglutinin and wheat germ agglutinin.
    Boldt DH; Dorsey SA
    J Immunol; 1983 Apr; 130(4):1646-53. PubMed ID: 6601134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peanut agglutinin, a new mitogen that binds to galactosyl sites exposed after neuraminidase treatment.
    Novogrodsky A; Lotan R; Ravid A; Sharon N
    J Immunol; 1975 Nov; 115(5):1243-8. PubMed ID: 1176775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opposing effects of mitogenic and nonmitogenic lectins on lymphocyte activation. Evidence that wheat germ agglutinin produces a negative signal.
    Greene WC; Parker CM; Parker CW
    J Biol Chem; 1976 Jul; 251(13):4017-25. PubMed ID: 932019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitogenic stimulation of human lymphocyte subpopulations by Lathyrus odoratus lectin.
    Kolberg J; Michaelsen TE
    Acta Pathol Microbiol Scand C; 1979 Aug; 87C(4):275-9. PubMed ID: 315154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The requirement for tetravalency of soybean agglutinin for induction of mitogenic stimulation of lymphocytes.
    Schechter B; Lis H; Lotan R; Novogrodsky A; Sharon N
    Eur J Immunol; 1976 Mar; 6(3):145-9. PubMed ID: 1033064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitogenic receptors on human peripheral blood lymphocytes: the interaction of Phaseolus vulgaris erythroagglutinating phytohemagglutinin and anti-thymocyte globulin on the human peripheral blood lymphocyte membrane.
    Kelly JP; Wedner HJ; Parker CW
    J Immunol; 1977 Jun; 118(6):2213-20. PubMed ID: 325143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lectin extracts of champedak seeds demonstrate selective stimulation of T lymphocyte proliferation.
    Hashim OH; Gendeh GS; Jaafar MI
    Biochem Int; 1992 Jun; 27(1):139-43. PubMed ID: 1627170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of immunoglobulin biosynthesis in human B cells by wheat germ agglutinin. I. Evidence that WGA can produce both a positive and negative signal for activation of human lymphocytes.
    Greene WC; Goldman CK; Marshall ST; Fleisher TA; Waldmann TA
    J Immunol; 1981 Aug; 127(2):799-804. PubMed ID: 6265558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of plant lectins with purified human lymphocyte populations: binding characteristics and kinetics of proliferation.
    Boldt DH; MacDermott RP; Jorolan EP
    J Immunol; 1975 May; 114(5):1532-6. PubMed ID: 1079038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Qualitative and quantitative aspects of lectin-induced vacuole formation in mouse peritoneal macrophages.
    Lotan R; Sharon N; Goldman R
    Prog Clin Biol Res; 1977; 17():531-43. PubMed ID: 928466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interferon induction in mouse spleen cells by mitogenic and nonmitogenic lectins.
    Ito Y; Tsurudome M; Yamada A; Hishiyama M
    J Immunol; 1984 May; 132(5):2440-4. PubMed ID: 6201544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. B lymphocyte specificity of lectins of Cepaea nemoralis and Dolichos biflorus: paradoxical binding of anti-A active lectins to human lymphocyte subclasses.
    Zalewski PD; Forbes IJ; Uhlenbruck G; Valente L
    Clin Exp Immunol; 1981 May; 44(2):304-14. PubMed ID: 6975674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T lymphocyte-mediated cytolysis. III. Delineation of mechanisms whereby mitogenic and non-mitogenic lectins mediate lymphocyte-target interaction.
    Berke G; Rosen D; Moscovitch M
    Immunology; 1983 Aug; 49(4):585-92. PubMed ID: 6603417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lectin-induced thermostable SE-rosette (TSER) formation by human peripheral blood lymphocytes.
    Jahn S; Volk HD; Grunow R
    Allerg Immunol (Leipz); 1985; 31(3):195-201. PubMed ID: 2933939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peanut lectin binding as a marker for activated T-lineage lymphocytes.
    Chervenak R; Cohen JJ
    Thymus; 1982 Feb; 4(2):61-7. PubMed ID: 6175057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.