These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 7277470)
1. Phosphate transport in human red blood cells: concentration dependence and pH dependence of the unidirectional phosphate flux at equilibrium conditions. Schnell KF; Besl E; von der Mosel R J Membr Biol; 1981; 61(3):173-92. PubMed ID: 7277470 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of the phosphate self-exchange flux in human erythrocytes and erythrocyte ghosts. Stadler F; Schnell KF J Membr Biol; 1990 Oct; 118(1):19-47. PubMed ID: 2283679 [TBL] [Abstract][Full Text] [Related]
3. Chloride transport in human red cells. Dalmark M J Physiol; 1975 Aug; 250(1):39-64. PubMed ID: 240929 [TBL] [Abstract][Full Text] [Related]
4. Concentration dependence of the unidirectional sulfate and phosphate flux in human red cell ghosts under selfexchange and under homoexchange conditions. Schnell KF; Besl E Pflugers Arch; 1984 Oct; 402(2):197-206. PubMed ID: 6527939 [TBL] [Abstract][Full Text] [Related]
5. Kinetics of glucose transport in human erythrocytes. Brahm J J Physiol; 1983 Jun; 339():339-54. PubMed ID: 6887027 [TBL] [Abstract][Full Text] [Related]
6. Asymmetry of the chloride transport system in human erythrocyte ghosts. Schnell KF; Besl E; Manz A Pflugers Arch; 1978 Jun; 375(1):87-95. PubMed ID: 567343 [TBL] [Abstract][Full Text] [Related]
7. The pH dependence of red cell membrane transport of titratible anions. An NMR study. Labotka RJ; Omachi A Biomed Biochim Acta; 1987; 46(2-3):S60-4. PubMed ID: 3593319 [TBL] [Abstract][Full Text] [Related]
8. The pH dependence of red cell membrane transport of titratable anions studied by NMR spectroscopy. Labotka RJ; Omachi A J Biol Chem; 1988 Jan; 263(3):1166-73. PubMed ID: 3335537 [TBL] [Abstract][Full Text] [Related]
9. pH dependence of phosphate transport across the red blood cell membrane after modification by dansyl chloride. Berghout A; Raida M; Romano L; Passow H Biochim Biophys Acta; 1985 May; 815(2):281-6. PubMed ID: 3995030 [TBL] [Abstract][Full Text] [Related]
10. Bicarbonate exchange through the human red cell membrane determined with [14C] bicarbonate. Wieth JO J Physiol; 1979 Sep; 294():521-39. PubMed ID: 512956 [TBL] [Abstract][Full Text] [Related]
11. Proton-sulfate cotransport: external proton activation of sulfate influx into human red blood cells. Milanick MA; Gunn RB Am J Physiol; 1984 Sep; 247(3 Pt 1):C247-59. PubMed ID: 6089577 [TBL] [Abstract][Full Text] [Related]
12. Concentration dependence of the chloride selfexchange and homoexchange fluxes in human red cell ghosts. Hautmann M; Schnell KF Pflugers Arch; 1985 Oct; 405(3):193-201. PubMed ID: 4069977 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of inorganic anion transport across the human red blood cell membrane by chloride-dependent association of dipyridamole with a stilbene disulfonate binding site on the band 3 protein. Legrum B; Passow H Biochim Biophys Acta; 1989 Feb; 979(2):193-207. PubMed ID: 2923878 [TBL] [Abstract][Full Text] [Related]
14. Glycine transport by human red blood cells and ghosts: evidence for glycine anion and proton cotransport by band 3. King PA; Gunn RB Am J Physiol; 1991 Nov; 261(5 Pt 1):C814-21. PubMed ID: 1659210 [TBL] [Abstract][Full Text] [Related]
15. Titration of transport and modifier sites in the red cell anion transport system. Wieth JO; Bjerrum PJ J Gen Physiol; 1982 Feb; 79(2):253-82. PubMed ID: 6276496 [TBL] [Abstract][Full Text] [Related]
16. Anion transport in red blood cells. II. Kinetics of reversible inhibition by nitroaromatic sulfonic acids. Barzilay M; Cabantchik ZI Membr Biochem; 1979; 2(2):255-81. PubMed ID: 229385 [TBL] [Abstract][Full Text] [Related]
17. Temperature-dependent changes of chloride transport kinetics in human red cells. Brahm J J Gen Physiol; 1977 Sep; 70(3):283-306. PubMed ID: 19556 [TBL] [Abstract][Full Text] [Related]
18. Chloride transport in human erythrocytes and ghosts: a quantitative comparison. Funder J; Wieth JO J Physiol; 1976 Nov; 262(3):679-98. PubMed ID: 13204 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of anion equilibrium exchange by dansylation of the red blood cell membrane. Legrum B; Fasold H; Passow H Hoppe Seylers Z Physiol Chem; 1980 Oct; 361(10):1573-90. PubMed ID: 7450677 [TBL] [Abstract][Full Text] [Related]
20. O(2)-dependent K(+) fluxes in trout red blood cells: the nature of O(2) sensing revealed by the O(2) affinity, cooperativity and pH dependence of transport. Berenbrink M; Völkel S; Heisler N; Nikinmaa M J Physiol; 2000 Jul; 526 Pt 1(Pt 1):69-80. PubMed ID: 10878100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]