These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7277476)

  • 1. Recycling of D-glucose in collagenous cuticle: A means of nutrient conservation?
    Gomme J
    J Membr Biol; 1981; 62(1-2):47-52. PubMed ID: 7277476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. D-Glucose transport across the apical membrane of the surface epithelium in Nereis diversicolor.
    Gomme J
    J Membr Biol; 1981; 62(1-2):29-46. PubMed ID: 6792359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volume regulation in Nereis diversicolor--I. The steady state.
    Fletcher CR
    Comp Biochem Physiol A Comp Physiol; 1974 Apr; 47(4):1199-241. PubMed ID: 4156275
    [No Abstract]   [Full Text] [Related]  

  • 4. Intestinal glucose transport and salinity adaptation in a euryhaline teleost.
    Reshkin SJ; Ahearn GA
    Am J Physiol; 1987 Mar; 252(3 Pt 2):R567-78. PubMed ID: 3826419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane transport parameters in frog corneal epithelium measured using impedance analysis techniques.
    Clausen C; Reinach PS; Marcus DC
    J Membr Biol; 1986; 91(3):213-25. PubMed ID: 3489098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrolyte transport across a simple epithelium. Steady-state and transient analysis.
    Weinstein AM; Stephenson JL
    Biophys J; 1979 Aug; 27(2):165-86. PubMed ID: 233579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Further quantification of the role of internal unstirred layers during the measurement of transport coefficients in giant internodes of Chara by a new stop-flow technique.
    Kim Y; Ye Q; Reinhardt H; Steudle E
    J Exp Bot; 2006; 57(15):4133-44. PubMed ID: 17085756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exchanges of sodium and chloride at low salinities by Nereis diversicolor (Annelida, Polychaeta).
    Smith RI
    Biol Bull; 1976 Dec; 151(3):587-600. PubMed ID: 1016668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Models of coupled salt and water transport across leaky epithelia.
    Weinstein AM; Stephenson JL
    J Membr Biol; 1981 May; 60(1):1-20. PubMed ID: 6264088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osmosis in cortical collecting tubules. A theoretical and experimental analysis of the osmotic transient phenomenon.
    Schafer JA; Patlak CS; Andreoli TE
    J Gen Physiol; 1974 Aug; 64(2):201-27. PubMed ID: 4846767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A central role for cell osmolarity in isotonic fluid transport across epithelia.
    Fischbarg J; Liebovitch LS; Koniarek JP
    Biol Cell; 1985; 55(3):239-44. PubMed ID: 2939911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of kinetic parameters of a carrier-mediated transport in the perfused intestine by two-dimensional laminar flow model: effects of the unstirred water layer.
    Yuasa H; Miyamoto Y; Iga T; Hanano M
    Biochim Biophys Acta; 1986 Apr; 856(2):219-30. PubMed ID: 3955040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport across epithelia. A kinetic evaluation.
    Barnett G; Licko V
    Biochim Biophys Acta; 1977 Jan; 464(2):276-86. PubMed ID: 831798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme activities and sodium-dependent active D-glucose transport in apical membrane vesicles isolated from kidney epithelial cell line (LLC-PK1).
    Inui K; Saito H; Takano M; Okano T; Kitazawa S; Hori R
    Biochim Biophys Acta; 1984 Jan; 769(2):514-8. PubMed ID: 6696898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmotic water flow in leaky epithelia.
    Diamond JM
    J Membr Biol; 1979 Dec; 51(3-4):195-216. PubMed ID: 395308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Characteristics of the uptake of precursors into the developing egg of Nereis virens Sars].
    Dondua AK; Fedorova ZhE; Sidorova PA
    Ontogenez; 1979; 10(5):421-7. PubMed ID: 573877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The physico-chemical mechanism of mediated transport. II. Osmotic and isosmotic volume flow.
    Massaldi HA
    J Theor Biol; 1984 Sep; 110(1):35-57. PubMed ID: 6492825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of epithelial water transport. The corneal endothelium.
    Liebovitch LS; Weinbaum S
    Biophys J; 1981 Aug; 35(2):315-38. PubMed ID: 7272441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative assessment of the resistance of the unstirred water layer to solute transport between two different intestinal perfusion systems.
    Yuasa H; Iga T; Hanano M; Watanabe J
    Biochim Biophys Acta; 1988 Feb; 938(2):189-98. PubMed ID: 3342231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia.
    Diamond JM; Bossert WH
    J Gen Physiol; 1967 Sep; 50(8):2061-83. PubMed ID: 6066064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.