These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7277504)

  • 1. Rigor tension during metabolic and ionic rises in resting tension in rat heart.
    Ventura-Clapier R; Vassort G
    J Mol Cell Cardiol; 1981 Jun; 13(6):551-61. PubMed ID: 7277504
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanism of action of sodium cyanide on rat diaphragm muscle.
    Adler M; Lebeda FJ; Kauffman FC; Deshpande SS
    J Appl Toxicol; 1999; 19(6):411-9. PubMed ID: 10547623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myocardial ischemic contracture. Metabolites affect rigor tension development and stiffness.
    Ventura-Clapier R; Veksler V
    Circ Res; 1994 May; 74(5):920-9. PubMed ID: 8156639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activated and rigor tensions in rat papillary muscle [proceedings].
    Vassort G; Ventura-Clapier R
    J Physiol; 1979 Jul; 292():79P-80P. PubMed ID: 490415
    [No Abstract]   [Full Text] [Related]  

  • 5. The role of intracellular [Ca2+] and [H+] in contractile failure of the hypoxic heart.
    Orchard CH; Allen DG; Morris PG
    Adv Myocardiol; 1985; 6():417-27. PubMed ID: 3992041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Ability of a phosphocreatine-myofibrillar creatine kinase system to prevent the rigor tension of myocardial fibers].
    Veksler VI; Kapel'ko VI
    Biofizika; 1985; 30(2):301-5. PubMed ID: 3986231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of myofibrillar creatine kinase in the relaxation of rigor tension in skinned cardiac muscle.
    Ventura-Clapier R; Vassort G
    Pflugers Arch; 1985 May; 404(2):157-61. PubMed ID: 3874393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of action of 2,3-butanedione monoxime on contracture during metabolic inhibition.
    Hajjar RJ; Ingwall JS; Gwathmey JK
    Am J Physiol; 1994 Jul; 267(1 Pt 2):H100-8. PubMed ID: 8048573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of creatine kinase in force development in chemically skinned rat cardiac muscle.
    Ventura-Clapier R; Mekhfi H; Vassort G
    J Gen Physiol; 1987 May; 89(5):815-37. PubMed ID: 3496424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creatine kinase in regulation of heart function and metabolism. II. The effect of phosphocreatine on the rigor tension of EGTA-treated rat myocardial fibers.
    Veksler VI; Kapelko VI
    Biochim Biophys Acta; 1984 Apr; 803(4):265-70. PubMed ID: 6422995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanochemistry of cardiac muscle. I. The isometric contraction.
    Pool PE; Sonnenblick EH
    J Gen Physiol; 1967 Mar; 50(4):951-65. PubMed ID: 6034511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adriamycin stimulates low-affinity Ca2+ binding and lipid peroxidation but depresses myocardial function.
    Singal PK; Pierce GN
    Am J Physiol; 1986 Mar; 250(3 Pt 2):H419-25. PubMed ID: 3953836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient and steady-state effects of sodium and calcium on myocardial contractile response.
    Tillisch JH; Fung LK; Hom PM; Langer GA
    J Mol Cell Cardiol; 1979 Feb; 11(2):137-48. PubMed ID: 423261
    [No Abstract]   [Full Text] [Related]  

  • 14. Depression of contractility in isolated rabbit myocardium following exposure to iron: role of free radicals.
    Artman M; Olson RD; Boucek RJ; Boerth RC
    Toxicol Appl Pharmacol; 1984 Feb; 72(2):324-32. PubMed ID: 6695379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of the contractility of mammalian myocardium at low rates of stimulation.
    Allen DG; Jewell BR; Wood EH
    J Physiol; 1976 Jan; 254(1):1-17. PubMed ID: 1249717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Na and Ca ions in the determination of isometrically developed tension of heart muscle.
    Mattiazzi AR; Cingolani HE; González NC; Blesa ES
    Arch Int Physiol Biochim; 1972 Jan; 80(1):121-32. PubMed ID: 4111289
    [No Abstract]   [Full Text] [Related]  

  • 17. Inhibition of hypoxic myocardial contracture by Cobalt in the rat.
    Conrad CH; Brooks WW; Ingwall JS; Bing OH
    J Mol Cell Cardiol; 1984 Apr; 16(4):345-54. PubMed ID: 6726823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Action of barium and potassium ions on fluctuations of the myocyte membrane potential in the rat papillary muscle].
    Zakharov SI; Bogdanov KIu; Zaĭtsev AV; Rozenshtraukh LV
    Biull Eksp Biol Med; 1987 Mar; 103(3):262-4. PubMed ID: 3828495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of p-chloromercuriphenylsulfonic acid (PCMBS) on force of contraction of mammalian myocardium and on ATP hydrolysis by sarcolemmal ATPase.
    Halbach S; Schönsteiner G; Ebner F; Reiter M
    Naunyn Schmiedebergs Arch Pharmacol; 1981 Dec; 318(2):121-9. PubMed ID: 6276788
    [No Abstract]   [Full Text] [Related]  

  • 20. The effects of inhibition of oxidative phosphorylation and glycolysis on contractility and high-energy phosphate content in cultured chick heart cells.
    Doorey AJ; Barry WH
    Circ Res; 1983 Aug; 53(2):192-201. PubMed ID: 6883645
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.