These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 7277506)

  • 1. The relationship between glycolysis, fatty acid metabolism and membrane integrity in neonatal myocytes.
    Higgins TJ; Allsopp D; Bailey PJ; D'Souza ED
    J Mol Cell Cardiol; 1981 Jun; 13(6):599-615. PubMed ID: 7277506
    [No Abstract]   [Full Text] [Related]  

  • 2. The influence of ATP depletion on the action of phospholipase C on cardiac myocyte membrane phospholipids.
    Higgins TJ; Bailey PJ; Allsopp D
    J Mol Cell Cardiol; 1981 Nov; 13(11):1027-30. PubMed ID: 7321048
    [No Abstract]   [Full Text] [Related]  

  • 3. Glycolysis vs. respiration as ATP source for the shape of quiescent cardiomyocytes.
    Uchida K; Doi K
    Respir Physiol; 1994 Jul; 97(2):213-23. PubMed ID: 7938918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interrelationship between cellular metabolic status and susceptibility of heart cells to attack by phospholipase.
    Higgins TJ; Bailey PJ; Allsopp D
    J Mol Cell Cardiol; 1982 Nov; 14(11):645-54. PubMed ID: 7154098
    [No Abstract]   [Full Text] [Related]  

  • 5. The AMP-adenosine cycle is active during normoxia and impaired in ATP depletion in isolated rabbit cardiomyocytes.
    Wagner DR; Bontemps F; van den Berghe G
    Adv Exp Med Biol; 1994; 370():323-6. PubMed ID: 7660919
    [No Abstract]   [Full Text] [Related]  

  • 6. Assessment of techniques for preventing glycolysis in cardiac muscle.
    Pirolo JS; Allen DG
    Cardiovasc Res; 1986 Nov; 20(11):837-44. PubMed ID: 3621285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of glycolysis in the relaxation process in mammalian cardiac muscle: comparison of the influence of glucose and 2-deoxyglucose on maintenance of resting tension.
    Anderson GL; Morris RG
    Life Sci; 1978 Jul; 23(1):23-31. PubMed ID: 682862
    [No Abstract]   [Full Text] [Related]  

  • 8. The contribution of glycolysis, glucose oxidation, lactate oxidation, and fatty acid oxidation to ATP production in isolated biventricular working hearts from 2-week-old rabbits.
    Itoi T; Lopaschuk GD
    Pediatr Res; 1993 Dec; 34(6):735-41. PubMed ID: 8108185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamate efflux via the reversal of the sodium-dependent glutamate transporter caused by glycolytic inhibition in rat cultured astrocytes.
    Gemba T; Oshima T; Ninomiya M
    Neuroscience; 1994 Dec; 63(3):789-95. PubMed ID: 7898678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maintenance of pancreatic endocrine cells of the neonatal rat: Part XIII--Effect of 2-deoxyglucose and iodoacetic acid on the functional maturation of neonatal rat B cells.
    Kagawa S; Nakao-Yamashita K; Wakabayashi S; Matsuoka A
    Indian J Biochem Biophys; 1988 Oct; 25(5):416-21. PubMed ID: 3072288
    [No Abstract]   [Full Text] [Related]  

  • 11. Alterations of ultrastructure and elemental composition in cultured neonatal rat cardiac myocytes after metabolic inhibition with iodoacetic acid.
    Buja LM; Hagler HK; Parsons D; Chien K; Reynolds RC; Willerson JT
    Lab Invest; 1985 Oct; 53(4):397-412. PubMed ID: 2413276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pHe, [Ca2+]e, and cell death during metabolic inhibition: role of phospholipase A2 and sarcolemmal phospholipids.
    Post JA; Wang SY; Langer GA
    Am J Physiol; 1998 Jan; 274(1):H18-26. PubMed ID: 9458847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycolytic inhibition: effects on diastolic relaxation and intracellular calcium handling in hypertrophied rat ventricular myocytes.
    Kagaya Y; Weinberg EO; Ito N; Mochizuki T; Barry WH; Lorell BH
    J Clin Invest; 1995 Jun; 95(6):2766-76. PubMed ID: 7769117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Release of arachidonate from membrane phospholipids in cultured neonatal rat myocardial cells during adenosine triphosphate depletion. Correlation with the progression of cell injury.
    Chien KR; Sen A; Reynolds R; Chang A; Kim Y; Gunn MD; Buja LM; Willerson JT
    J Clin Invest; 1985 Jun; 75(6):1770-80. PubMed ID: 3924955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iodine 125-phenylpentadecanoic acid and its beta-methyl substitute metabolism in cultured mouse embryonal myocytes--iodine-labelled fatty acids as tracers of myocardial high energy phosphate.
    Okano M; Ishida H; Ohsuzu F; Sakata N; Katsushika S; Aosaki N; Nakamura H
    Jpn Circ J; 1993 Feb; 57(2):138-46. PubMed ID: 8450598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of glucose phosphorylation by fatty acids in the perfused rat heart.
    Chatham J; Gilbert HF; Radda GK
    FEBS Lett; 1988 Oct; 238(2):445-9. PubMed ID: 3169268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competition between lactate and fatty acids as sources of ATP in the isolated working rat heart.
    Schönekess BO
    J Mol Cell Cardiol; 1997 Oct; 29(10):2725-33. PubMed ID: 9344767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactate-supported synaptic function in the rat hippocampal slice preparation.
    Schurr A; West CA; Rigor BM
    Science; 1988 Jun; 240(4857):1326-8. PubMed ID: 3375817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of hypoxia on myocardial high-energy phosphates in the neonatal mammalian heart.
    Jarmakani JM; Nagatomo T; Nakazawa M; Langer GA
    Am J Physiol; 1978 Nov; 235(5):H475-81. PubMed ID: 727269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myocardial fatty acid oxidation: evidence for an albumin-receptor-mediated membrane transfer of fatty acids.
    Hütter JF; Piper HM; Spieckermann PG
    Basic Res Cardiol; 1984; 79(3):274-82. PubMed ID: 6089731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.