These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 7277535)

  • 1. Bridging of large chronic osteoperiosteal gaps by allogeneic decalcified bone matrix implants in rabbits.
    Tuli SM; Gupta KB
    J Trauma; 1981 Oct; 21(10):894-8. PubMed ID: 7277535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The osteoninductive property of decalcified bone matrix. An experimental study,
    Tuli SM; Singh AD
    J Bone Joint Surg Br; 1978 Feb; 60(1):116-23. PubMed ID: 342532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteoinductivity of partially decalcified alloimplants in healing of large osteoperiosteal defects.
    Gupta D; Tuli SM
    Acta Orthop Scand; 1982 Dec; 53(6):857-65. PubMed ID: 6758473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of preimplantation treatment on the bone-forming potential of decalcified allogeneic and xenogeneic bone-matrix implants.
    Tuli SM; Chaudhuri RH
    Arch Orthop Trauma Surg (1978); 1979 Aug; 94(3):167-73. PubMed ID: 386996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of size and shape of the allogeneic bone grafts in bridging experimental ulnar gap in rabbits.
    Saraf SK; Kumar A; Tuli SM; Khanna S
    Indian J Exp Biol; 1994 Oct; 32(10):690-3. PubMed ID: 7821978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fresh autogeneic, frozen allogeneic, and decalcified allogeneic bone grafts in dogs.
    Schwarz N; Schlag G; Thurnher M; Eschberger J; Dinges HP; Redl H
    J Bone Joint Surg Br; 1991 Sep; 73(5):787-90. PubMed ID: 1894667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of demineralized bone matrix in the repair of segmental defects. Augmentation with extracted matrix proteins and a comparison with autologous grafts.
    Bolander ME; Balian G
    J Bone Joint Surg Am; 1986 Oct; 68(8):1264-74. PubMed ID: 3533947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of decalcified granulated homologous cortical bone matrix in the correction of diaphyseal bone defect. An experimental study in rabbits.
    Volpon JB; Xavier CA; Conçalves RP
    Arch Orthop Trauma Surg (1978); 1982; 99(3):199-207. PubMed ID: 7041849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autolysed antigen-extracted allogeneic bone for repair of diaphyseal bone defects in rabbits.
    Han CD; Kang HJ; Kang ES; Shin KH; Kim NH
    Yonsei Med J; 1990 Sep; 31(3):251-7. PubMed ID: 2281684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone regeneration with resorbable polymeric membranes: treatment of diaphyseal bone defects in the rabbit radius with poly(L-lactide) membrane. A pilot study.
    Meinig RP; Rahn B; Perren SM; Gogolewski S
    J Orthop Trauma; 1996; 10(3):178-90. PubMed ID: 8667110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bridging large bone defects with a xenograft composited with autologous bone marrow. An experimental study.
    Gupta D; Khanna S; Tuli SM
    Int Orthop; 1982; 6(2):79-85. PubMed ID: 6759422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allogeneic adipose-derived stem cells regenerate bone in a critical-sized ulna segmental defect.
    Wen C; Yan H; Fu S; Qian Y; Wang D; Wang C
    Exp Biol Med (Maywood); 2016 Jul; 241(13):1401-9. PubMed ID: 25819682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Repair of articular cartilage defects with "two-phase" tissue engineered cartilage constructed by autologous marrow mesenchymal stem cells and "two-phase" allogeneic bone matrix gelatin].
    Yin Z; Zhang L; Wang J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Aug; 19(8):652-7. PubMed ID: 16130396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of tricalcium phosphate implant in bridging the large osteoperiosteal gaps in rabbits.
    Goel SC; Singh D; Rastogi A; Kumaraswamy V; Gupta A; Sharma N
    Indian J Exp Biol; 2013 May; 51(5):375-80. PubMed ID: 23821825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect.
    Arinzeh TL; Peter SJ; Archambault MP; van den Bos C; Gordon S; Kraus K; Smith A; Kadiyala S
    J Bone Joint Surg Am; 2003 Oct; 85(10):1927-35. PubMed ID: 14563800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autolyzed antigen-extracted allogeneic bone for bridging segmented diaphyseal bone defects in rabbits.
    Janovec M; Dvorák K
    Clin Orthop Relat Res; 1988 Apr; (229):249-56. PubMed ID: 3280199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon fibre reinforced epoxy implants for bridging large osteoperiosteal gaps.
    Prakash R; Marwah S; Goel SC; Tuli SM
    Biomaterials; 1988 Mar; 9(2):198-202. PubMed ID: 3370288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone regeneration with resorbable polymeric membranes. III. Effect of poly(L-lactide) membrane pore size on the bone healing process in large defects.
    Pineda LM; Büsing M; Meinig RP; Gogolewski S
    J Biomed Mater Res; 1996 Jul; 31(3):385-94. PubMed ID: 8806065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone regeneration in a rabbit ulna defect model: use of allogeneic adipose-derivedstem cells with low immunogenicity.
    Gu H; Xiong Z; Yin X; Li B; Mei N; Li G; Wang C
    Cell Tissue Res; 2014 Nov; 358(2):453-64. PubMed ID: 25064029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of fresh autogenous with formalin preserved allogeneic bone grafts in rabbits. An experimental study.
    Mehra V; Gill SS; Dhillon MS; Bhusnurmath SR; Nagi ON
    Int Orthop; 1993 Nov; 17(5):330-4. PubMed ID: 8125674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.