These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 727784)

  • 1. Phosphorus-containing pesticide breakdown products: quantitative utilization as phosphorus sources by bacteria.
    Cook AM; Daughton CG; Alexander M
    Appl Environ Microbiol; 1978 Nov; 36(5):668-72. PubMed ID: 727784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphonate utilization by bacteria.
    Cook AM; Daughton CG; Alexander M
    J Bacteriol; 1978 Jan; 133(1):85-90. PubMed ID: 618850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphate and soil binding: factors limiting bacterial degradation of ionic phosphorus-containing pesticide metabolites.
    Daughton CG; Cook AM; Alexander M
    Appl Environ Microbiol; 1979 Mar; 37(3):605-9. PubMed ID: 453832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of 2-phosphonobutane-1,2,4-tricarboxylic acid as source of phosphorus by environmental bacterial isolates.
    Raschke H; Rast HG; Kleinstück R; Sicius H; Wischer D
    Chemosphere; 1994 Jul; 29(1):81-8. PubMed ID: 8044636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial cleavage of various organophosphorus insecticides.
    Rosenberg A; Alexander M
    Appl Environ Microbiol; 1979 May; 37(5):886-91. PubMed ID: 225990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parathion utilization by bacterial symbionts in a chemostat.
    Daughton CG; Hsieh DP
    Appl Environ Microbiol; 1977 Aug; 34(2):175-84. PubMed ID: 410368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical and molecular basis of pesticide degradation by microorganisms.
    Singh BK; Kuhad RC; Singh A; Lal R; Tripathi KK
    Crit Rev Biotechnol; 1999; 19(3):197-225. PubMed ID: 10526405
    [No Abstract]   [Full Text] [Related]  

  • 8. Membrane bioreactor treatment of commonly used organophosphate pesticides.
    Ghoshdastidar AJ; Saunders JE; Brown KH; Tong AZ
    J Environ Sci Health B; 2012; 47(7):742-50. PubMed ID: 22560038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of diverse organophosphorus pollutants by marine bacteria.
    Despotović D; Aharon E; Trofimyuk O; Dubovetskyi A; Cherukuri KP; Ashani Y; Eliason O; Sperfeld M; Leader H; Castelli A; Fumagalli L; Savidor A; Levin Y; Longo LM; Segev E; Tawfik DS
    Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2203604119. PubMed ID: 35917352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occurrence of microorganisms capable of decomposing organic phosphorus compounds in two types of bottom sediments of the eutrophic lake Jeziorak.
    Strzelczyk E; Donderski W; Lewosz W
    Acta Microbiol Pol B; 1972; 4(3):101-10. PubMed ID: 4566842
    [No Abstract]   [Full Text] [Related]  

  • 11. [Microbial dechlorination of pesticides and other environmental chemicals].
    Janke D; Fritsche W
    Z Allg Mikrobiol; 1978; 18(5):365-82. PubMed ID: 695708
    [No Abstract]   [Full Text] [Related]  

  • 12. Microbial degradation of synthetic organochlorine compounds.
    Motosugi K; Soda K
    Experientia; 1983 Nov; 39(11):1214-20. PubMed ID: 6416886
    [No Abstract]   [Full Text] [Related]  

  • 13. Removal enactment of organo-phosphorous pesticide using bacteria isolated from domestic sewage.
    Shabbir M; Singh M; Maiti S; Kumar S; Saha SK
    Bioresour Technol; 2018 Sep; 263():280-288. PubMed ID: 29753261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical and microbial degradation of ten selected pesticides in aquatic systems.
    Paris DF; Lewis DL
    Residue Rev; 1973; 45():95-124. PubMed ID: 4196563
    [No Abstract]   [Full Text] [Related]  

  • 15. Microbial degradation of organophosphorus xenobiotics: metabolic pathways and molecular basis.
    Karpouzas DG; Singh BK
    Adv Microb Physiol; 2006; 51():119-85. PubMed ID: 17091564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of triaryl phosphates by a mixed bacterial population.
    Pickard MA; Whelihan JA; Westlake DW
    Can J Microbiol; 1975 Feb; 21(2):140-5. PubMed ID: 163128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphonate utilization by bacterial cultures and enrichments from environmental samples.
    Schowanek D; Verstraete W
    Appl Environ Microbiol; 1990 Apr; 56(4):895-903. PubMed ID: 2339877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of soil bacteria able to hydrolyze both organophosphate and carbamate pesticides.
    Chanika E; Georgiadou D; Soueref E; Karas P; Karanasios E; Tsiropoulos NG; Tzortzakakis EA; Karpouzas DG
    Bioresour Technol; 2011 Feb; 102(3):3184-92. PubMed ID: 21112209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biodegradability test for insecticides.
    Halvorson H; Ishaque M; Solomon J; Grussendorf OW
    Can J Microbiol; 1971 May; 17(5):585-91. PubMed ID: 5087886
    [No Abstract]   [Full Text] [Related]  

  • 20. Occurrence of microorganisms capable of decomposing organic phosphorus compounds in two types of bottom sediments of the eutrophic lake Jeziorak.
    Strzelczyk E; Donderski W; Lewosz W
    Acta Microbiol Pol A; 1972; 4(3):101-10. PubMed ID: 5069546
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.