These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 727856)

  • 1. Function of fumarate reductase in methanogenic bacteria (Methanobacterium).
    Fuchs G; Stupperich E; Thauer RK
    Arch Microbiol; 1978 Nov; 119(2):215-8. PubMed ID: 727856
    [No Abstract]   [Full Text] [Related]  

  • 2. An unusual thiol-driven fumarate reductase in Methanobacterium with the production of the heterodisulfide of coenzyme M and N-(7-mercaptoheptanoyl)threonine-O3-phosphate.
    Bobik TA; Wolfe RS
    J Biol Chem; 1989 Nov; 264(31):18714-8. PubMed ID: 2509466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for an incomplete reductive carboxylic acid cycle in Methanobacterium thermoautotrophicum.
    Fuchs G; Stupperich E
    Arch Microbiol; 1978 Jul; 118(1):121-5. PubMed ID: 29586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of reduction of fumarate to succinate in perfused rat liver under conditions of reduced O2 tension.
    Hoberman HD; Prosky L
    Biochim Biophys Acta; 1967 Nov; 148(2):392-9. PubMed ID: 4294668
    [No Abstract]   [Full Text] [Related]  

  • 5. Fumarate reductase superfamily: A diverse group of enzymes whose evolution is correlated to the establishment of different metabolic pathways.
    Jardim-Messeder D; Cabreira-Cagliari C; Rauber R; Turchetto-Zolet AC; Margis R; Margis-Pinheiro M
    Mitochondrion; 2017 May; 34():56-66. PubMed ID: 28088649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved conversion of fumarate to succinate by Escherichia coli strains amplified for fumarate reductase.
    Goldberg I; Lonberg-Holm K; Bagley EA; Stieglitz B
    Appl Environ Microbiol; 1983 Jun; 45(6):1838-47. PubMed ID: 6349526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of 8 succinate per mol nickel into factors F430 by Methanobacterium thermoautotrophicum.
    Diekert G; Gilles HH; Jaenchen R; Thauer RK
    Arch Microbiol; 1980 Dec; 128(2):256-62. PubMed ID: 7212929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Biosynthesis of free amino acids by Proteus vulgaris 14K on media with organic acids].
    Shaposhnikov VN; Isaeva VS
    Mikrobiologiia; 1967; 36(2):197-204. PubMed ID: 5619864
    [No Abstract]   [Full Text] [Related]  

  • 9. Mechanism of the toxic effects of hyperbaric oxygen.
    Straub JP
    Nature; 1967 Sep; 215(5106):1196. PubMed ID: 4294067
    [No Abstract]   [Full Text] [Related]  

  • 10. Tricarboxylic acids cycle dehydrogenases and lactate-dehydrogenase interaction in the amphibian embryos mitochondria.
    Petrucci D; Miranda M; Salfi V
    Life Sci; 1969 Nov; 8(22):1229-35. PubMed ID: 4311625
    [No Abstract]   [Full Text] [Related]  

  • 11. Succinate dehydrogenase in various tissues of Anodonta couperiana, Elliptio buckleyi and Mercenaria campechiensis (Mollusca: Bivalvia).
    Long SD; Rodrick GE; Friedl FE
    Comp Biochem Physiol B; 1984; 78(2):467-72. PubMed ID: 6467909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiol:fumarate reductase (Tfr) from Methanobacterium thermoautotrophicum--identification of the catalytic sites for fumarate reduction and thiol oxidation.
    Heim S; Künkel A; Thauer RK; Hedderich R
    Eur J Biochem; 1998 Apr; 253(1):292-9. PubMed ID: 9578488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of succinate dehydrogenase from Desulfobulbus elongatus, a propionate oxidizing, sulfate reducing bacterium.
    Samain E; Patil DS; DerVartanian DV; Albagnac G; LeGall J
    FEBS Lett; 1987 May; 216(1):140-4. PubMed ID: 3582662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Ferricyanide and fumarate-reducing enzymes in the mitochondria of helminths].
    Benediktov II
    Angew Parasitol; 1972 Feb; 13(1):28-35. PubMed ID: 5053174
    [No Abstract]   [Full Text] [Related]  

  • 15. Succinate:quinone oxidoreductases from epsilon-proteobacteria.
    Lancaster CR; Simon J
    Biochim Biophys Acta; 2002 Jan; 1553(1-2):84-101. PubMed ID: 11803019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Succinyl-phosphatides as intermediates in the succinate-dehydrogenase reaction of yeast.
    Abdulla YH; Davison AN
    Biochem J; 1965 Aug; 96(2):10C-12C. PubMed ID: 5837774
    [No Abstract]   [Full Text] [Related]  

  • 17. Regulation of succinate dehydrogenase in Escherichia coli.
    Ruíz-Herrera J; García LG
    J Gen Microbiol; 1972 Aug; 72(1):29-35. PubMed ID: 4341933
    [No Abstract]   [Full Text] [Related]  

  • 18. Structure and mechanism of the flavocytochrome c fumarate reductase of Shewanella putrefaciens MR-1.
    Leys D; Tsapin AS; Nealson KH; Meyer TE; Cusanovich MA; Van Beeumen JJ
    Nat Struct Biol; 1999 Dec; 6(12):1113-7. PubMed ID: 10581551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Dissociation constants of succinate dehydrogenase complexes with succinate, fumarate and malonate].
    Kotliar AB; Vinogradov AD
    Biokhimiia; 1984 Mar; 49(3):511-8. PubMed ID: 6722218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MITOCHONDRIAL AND CYTOPLASMIC ENZYMES FOR THE REDUCTION OF FUMARATE TO SUCCINATE IN YEAST.
    ROSSI C; HAUBER J; SINGER TP
    Nature; 1964 Oct; 204():167-70. PubMed ID: 14222265
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.