These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 727856)

  • 21. Augmented conversion of aspartate and glutamate to succinate during anoxia in rabbit heart.
    Sanborn T; Gavin W; Berkowitz S; Perille T; Lesch M
    Am J Physiol; 1979 Nov; 237(5):H535-41. PubMed ID: 495758
    [No Abstract]   [Full Text] [Related]  

  • 22. Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum.
    Fuchs G; Stupperich E; Thauer RK
    Arch Microbiol; 1978 Apr; 117(1):61-6. PubMed ID: 678012
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tricarboxylic acid cycle in M. lepraemurium.
    Mori T; Kosaka K; Tanaka Y
    Int J Lepr Other Mycobact Dis; 1971; 39(4):796-812. PubMed ID: 4949309
    [No Abstract]   [Full Text] [Related]  

  • 24. Reduction of furmarate and oxidation of succinate in Crassostrea virginica (Gmelin).
    Wegener BA; Barnit AE; Hammen CS
    Life Sci; 1969 Apr; 8(8):335-43. PubMed ID: 4239857
    [No Abstract]   [Full Text] [Related]  

  • 25. The influence of extracellular hydrogen on the metabolism of Bacteroides ruminicola, Anaerovibrio lipolytica and Selenomonas ruminantium.
    Henderson C
    J Gen Microbiol; 1980 Aug; 119(2):485-91. PubMed ID: 6785381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Classification of fumarate reductases and succinate dehydrogenases based upon their contrasting behaviour in the reduced benzylviologen/fumarate assay.
    Ackrell BA; Armstrong FA; Cochran B; Sucheta A; Yu T
    FEBS Lett; 1993 Jul; 326(1-3):92-4. PubMed ID: 8325393
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Malic enzyme, malate dehydrogenase, fumarate reductase and succinate dehydrogenase in the larvae of Taenia crassiceps (Zeder, 1800).
    Zenka J; Prokopic J
    Folia Parasitol (Praha); 1987; 34(2):131-6. PubMed ID: 3596392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-carbon metabolism in methanogenic bacteria: analysis of short-term fixation products of 14CO2 and 14CH3OH incorporated into whole cells.
    Daniels L; Zeikus JG
    J Bacteriol; 1978 Oct; 136(1):75-84. PubMed ID: 101522
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of conversion of aspartate into glutamate in cerebral-cortex slices.
    Simon G; Drori JB; Cohen MM
    Biochem J; 1967 Jan; 102(1):153-62. PubMed ID: 6030277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arginine and urea biosynthesis in the land planarian: its significance in biochemical evolution.
    Campbell JW
    Nature; 1965 Dec; 208(5017):1299-301. PubMed ID: 5870186
    [No Abstract]   [Full Text] [Related]  

  • 31. Interaction of the membrane-bound succinate dehydrogenase with substrate and competitive inhibitors.
    Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1984 Jan; 784(1):24-34. PubMed ID: 6691982
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activation of succinate dehydrogenase from adult Fasciola hepatica (Trematoda).
    Barrett J
    Parasitology; 1978 Jun; 76(3):269-75. PubMed ID: 662411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reversible electrochemistry of fumarate reductase immobilized on an electrode surface. Direct voltammetric observations of redox centers and their participation in rapid catalytic electron transport.
    Sucheta A; Cammack R; Weiner J; Armstrong FA
    Biochemistry; 1993 May; 32(20):5455-65. PubMed ID: 8499449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thiol coenzymes of methanogens.
    Noll KM
    Methods Enzymol; 1995; 251():470-82. PubMed ID: 7651230
    [No Abstract]   [Full Text] [Related]  

  • 35. The covalent attachment of FAD to the flavoprotein of Saccharomyces cerevisiae succinate dehydrogenase is not necessary for import and assembly into mitochondria.
    Robinson KM; Rothery RA; Weiner JH; Lemire BD
    Eur J Biochem; 1994 Jun; 222(3):983-90. PubMed ID: 8026509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The biosynthesis of aspartic acid, glutamic acid, and alanine in Rhizobium japonicum.
    Lillich TT; Elkan GH
    Can J Microbiol; 1971 May; 17(5):683-8. PubMed ID: 5087891
    [No Abstract]   [Full Text] [Related]  

  • 37. Regulation of C4-dicarboxylic acid transport in Bacillus subtilis.
    Ghei OK; Kay WW
    Can J Microbiol; 1975 Apr; 21(4):527-36. PubMed ID: 804342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Metabolism of succinic acid in rat brain mitochondria].
    Papa S; Lofrumento NE; De Gregorio G; Paradies G; Quagliariello E
    Boll Soc Ital Biol Sper; 1967 Oct; 43(19):1233-7. PubMed ID: 5589830
    [No Abstract]   [Full Text] [Related]  

  • 39. EPR studies on the respiratory chain of wild-type Saccharomyces cerevisiae and mutants with a deficiency in succinate dehydrogenase.
    Kok J DE; Muller JL; Slater EC
    Biochim Biophys Acta; 1975 Jun; 387(3):441-50. PubMed ID: 166668
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic characterization of a single bifunctional enzyme for fumarate reduction and succinate oxidation in Geobacter sulfurreducens and engineering of fumarate reduction in Geobacter metallireducens.
    Butler JE; Glaven RH; Esteve-Núñez A; Núñez C; Shelobolina ES; Bond DR; Lovley DR
    J Bacteriol; 2006 Jan; 188(2):450-5. PubMed ID: 16385034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.