These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 7278753)

  • 1. Atmospheric pollution.
    Mulcahy MF
    Med J Aust; 1981 Jun; 1(13):693-8. PubMed ID: 7278753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis.
    Tsimpidi AP; Trail M; Hu Y; Nenes A; Russell AG
    J Air Waste Manag Assoc; 2012 Oct; 62(10):1150-65. PubMed ID: 23155861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence against Rapid Mercury Oxidation in Photochemical Smog.
    Lyman SN; Elgiar T; Gustin MS; Dunham-Cheatham SM; David LM; Zhang L
    Environ Sci Technol; 2022 Aug; 56(16):11225-11235. PubMed ID: 35877386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photochemical smog modeling for assessment of potential impacts of different management strategies on air quality of the Bangkok Metropolitan Region, Thailand.
    Oanh NT; Zhang B
    J Air Waste Manag Assoc; 2004 Oct; 54(10):1321-38. PubMed ID: 15540584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An historical experiment: Los Angeles smog evolution observed by blimp.
    Hidy GM
    J Air Waste Manag Assoc; 2018 Jul; 68(7):643-655. PubMed ID: 29432064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trends in photochemical smog in the Cape Peninsula and the implications for health.
    Bailie RS; Ehrlich RI; Truluck TF
    S Afr Med J; 1994 Nov; 84(11):738-42. PubMed ID: 7495009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Smog chamber simulation of ozone formation from atmospheric photooxidation of propane].
    Huang LH; Mo CR; Xu YF; Jia L
    Huan Jing Ke Xue; 2012 Aug; 33(8):2551-7. PubMed ID: 23213871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peroxybenzoylnitrate: measurements in smog chambers and in urban air.
    Fung K; Grosjean D
    Sci Total Environ; 1985 Nov; 46():29-40. PubMed ID: 4081784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atmospheric iodine abates smog ozone.
    HAMILTON WF; LEVINE M; SIMON E
    Science; 1963 Apr; 140(3563):190-1. PubMed ID: 13952351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physico-chemical and biological monitoring as integrated tools in evaluating tropospheric ozone in urban and semi-rural areas.
    Allegrini I; Cortiello M; Manes F; Tripodo P
    Sci Total Environ; 1994 Jan; 141(1-3):75-85. PubMed ID: 8178125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atmospheric chemistry and air pollution.
    Gaffney JS; Marley NA
    ScientificWorldJournal; 2003 Apr; 3():199-234. PubMed ID: 12806107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Polluting agents and sources of urban air pollution].
    Cocheo V
    Ann Ist Super Sanita; 2000; 36(3):267-74. PubMed ID: 11293295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photochemical products in urban mixtures enhance inflammatory responses in lung cells.
    Sexton KG; Jeffries HE; Jang M; Kamens RM; Doyle M; Voicu I; Jaspers I
    Inhal Toxicol; 2004; 16 Suppl 1():107-14. PubMed ID: 15204799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a New Chemical Mechanism for 2-Amino-2-methyl-1-propanol in a Reactive Environment from CSIRO Smog Chamber Experiments.
    Li K; White S; Zhao B; Geng C; Halliburton B; Wang Z; Zhao Y; Yu H; Yang W; Bai Z; Azzi M
    Environ Sci Technol; 2020 Aug; 54(16):9844-9853. PubMed ID: 32692547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Air quality modeling for policy development.
    Reid N; Misra PK; Amman M; Hales J
    J Toxicol Environ Health A; 2007 Feb; 70(3-4):295-310. PubMed ID: 17365592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of photochemical smog from a flow reactor on bacteria. II. Determination of bactericidal components in photochemical smog].
    Nover H; Botzenhart K
    Zentralbl Bakteriol Mikrobiol Hyg B; 1983 Apr; 177(3-4):298-311. PubMed ID: 6422677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photochemical modeling of emissions trading of highly reactive volatile organic compounds in Houston, Texas. 1. Reactivity based trading and potential for ozone hot spot formation.
    Wang L; Thompson T; McDonald-Buller EC; Webb A; Allen DT
    Environ Sci Technol; 2007 Apr; 41(7):2095-102. PubMed ID: 17438748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric photochemical transformations enhance 1,3-butadiene-induced inflammatory responses in human epithelial cells: The role of ozone and other photochemical degradation products.
    Doyle M; Sexton KG; Jeffries H; Jaspers I
    Chem Biol Interact; 2007 Mar; 166(1-3):163-9. PubMed ID: 16860297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with climate.
    Tang X; Wilson SR; Solomon KR; Shao M; Madronich S
    Photochem Photobiol Sci; 2011 Feb; 10(2):280-91. PubMed ID: 21253665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a speciated, hourly, and gridded air pollutants emission modeling system--a case study on the precursors of photochemical smog in the Seoul metropolitan area, Korea.
    Kim DY; Kim JW
    J Air Waste Manag Assoc; 2000 Mar; 50(3):340-7. PubMed ID: 10734706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.