BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 7279116)

  • 1. gamma-Aminobutyric acid system in isolated dorsal and ventral horn neurons from bovine spinal cord.
    Wakabayashi M; Higa H; Kushiya E; Araki K; Takahashi Y
    Neurochem Res; 1981 Jun; 6(6):659-71. PubMed ID: 7279116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution and development of glutamic acid decarboxylase immunoreactivity in the spinal cord of the dogfish Scyliorhinus canicula (elasmobranchs).
    Sueiro C; Carrera I; Molist P; Rodríguez-Moldes I; Anadón R
    J Comp Neurol; 2004 Oct; 478(2):189-206. PubMed ID: 15349979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient expression of GABA immunoreactivity in the developing rat spinal cord.
    Ma W; Behar T; Barker JL
    J Comp Neurol; 1992 Nov; 325(2):271-90. PubMed ID: 1460116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct development of GABA system in the ventral and dorsal horns in the embryonic mouse spinal cord.
    Kosaka Y; Kin H; Tatetsu M; Uema I; Takayama C
    Brain Res; 2012 Nov; 1486():39-52. PubMed ID: 23044470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative distribution of GAD65 and GAD67 mRNAs and proteins in the rat spinal cord supports a differential regulation of these two glutamate decarboxylases in vivo.
    Feldblum S; Dumoulin A; Anoal M; Sandillon F; Privat A
    J Neurosci Res; 1995 Dec; 42(6):742-57. PubMed ID: 8847736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphine induced alterations of gamma-aminobutyric acid and taurine contents and L-glutamate decarboxylase activity in rat spinal cord and thalamus: possible correlates with analgesic action of morphine.
    Kuriyama K; Yoneda Y
    Brain Res; 1978 Jun; 148(1):163-79. PubMed ID: 566149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroepithelial cells in the rat spinal cord express glutamate decarboxylase immunoreactivity in vivo and in vitro.
    Ma W; Behar T; Maric D; Maric I; Barker JL
    J Comp Neurol; 1992 Nov; 325(2):257-70. PubMed ID: 1460115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preproenkephalin mRNA is expressed in a subpopulation of GABAergic neurons in the spinal dorsal horn of the GAD67-GFP knock-in mouse.
    Huang J; Wang Y; Wang W; Wei Y; Li Y; Wu S
    Anat Rec (Hoboken); 2008 Oct; 291(10):1334-41. PubMed ID: 18780300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunocytochemical localization of glutamate decarboxylase in rat spinal cord.
    McLaughlin BJ; Barber R; Saito K; Roberts E; Wu JY
    J Comp Neurol; 1975 Dec; 164(3):305-21. PubMed ID: 1184786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of tolerance to the effects of vigabatrin (gamma-vinyl-GABA) on GABA release from rat cerebral cortex, spinal cord and retina.
    Neal MJ; Shah MA
    Br J Pharmacol; 1990 Jun; 100(2):324-8. PubMed ID: 2379037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of thyrotropin releasing hormone (TRH) on GABA (gamma aminobutyric acid) metabolism in mouse and rat brains: as to the activities of GAD (glutamic acid decarboxylase), GABA-T (GABA-transaminase) and GABA re-uptake].
    Kurahashi K; Kaneko S; Matsunaga M; Sato T; Takebe K
    No To Shinkei; 1985 Dec; 37(12):1211-6. PubMed ID: 3937548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvements in impaired GABA and GAD65/67 production in the spinal dorsal horn contribute to exercise-induced hypoalgesia in a mouse model of neuropathic pain.
    Kami K; Taguchi Ms S; Tajima F; Senba E
    Mol Pain; 2016; 12():. PubMed ID: 27030712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABA- and glycine-immunoreactive neurons in the spinal cord of the carp, Cyprinus carpio.
    Uematsu K; Shirasaki M; Storm-Mathisen J
    J Comp Neurol; 1993 Jun; 332(1):59-68. PubMed ID: 8514921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral and biochemical analysis of GABA-mediated inhibition in the early chick embryo.
    Reitzel JL; Maderdrut JL; Oppenheim RW
    Brain Res; 1979 Aug; 172(3):487-504. PubMed ID: 224974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunocytochemical localization of amino acid neurotransmitter candidates in the ventral horn of the cat spinal cord: a light microscopic study.
    Shupliakov O; Ornung G; Brodin L; Ulfhake B; Ottersen OP; Storm-Mathisen J; Cullheim S
    Exp Brain Res; 1993; 96(3):404-18. PubMed ID: 7905422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABAergic mechanism involved in sinoaortic denervation in rats.
    Solignac D; Apud JA; Enero MA
    Eur J Pharmacol; 1988 Aug; 153(1):111-5. PubMed ID: 3215275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal and glial localization of acetylcholinesterase and GABA transaminase in organized cultures of developing rat spinal cord.
    Haynes LW
    Experientia; 1983 Feb; 39(2):223-5. PubMed ID: 6832304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental changes in the distribution of gamma-aminobutyric acid-immunoreactive neurons in the embryonic chick lumbosacral spinal cord.
    Antal M; Berki AC; Horváth L; O'Donovan MJ
    J Comp Neurol; 1994 May; 343(2):228-36. PubMed ID: 8027440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc-enriched GABAergic terminals in mouse spinal cord.
    Wang Z; Li JY; Dahlström A; Danscher G
    Brain Res; 2001 Dec; 921(1-2):165-72. PubMed ID: 11720723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental expression of glycine immunoreactivity and its colocalization with GABA in the embryonic chick lumbosacral spinal cord.
    Berki AC; O'Donovan MJ; Antal M
    J Comp Neurol; 1995 Nov; 362(4):583-96. PubMed ID: 8636469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.