These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 7279116)

  • 21. Diabetes affects the expression of GABA and potassium chloride cotransporter in the spinal cord: a study in streptozotocin diabetic rats.
    Morgado C; Pinto-Ribeiro F; Tavares I
    Neurosci Lett; 2008 Jun; 438(1):102-6. PubMed ID: 18457921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GABAergic innervation in cerebral blood vessels: an immunohistochemical demonstration of L-glutamic acid decarboxylase and GABA transaminase.
    Imai H; Okuno T; Wu JY; Lee TJ
    J Cereb Blood Flow Metab; 1991 Jan; 11(1):129-34. PubMed ID: 1983997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of GABA receptor subtypes in inhibition of primate spinothalamic tract neurons: difference between spinal and periaqueductal gray inhibition.
    Lin Q; Peng YB; Willis WD
    J Neurophysiol; 1996 Jan; 75(1):109-23. PubMed ID: 8822545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biphasic response of spinal GABAergic neurons after a lumbar rhizotomy in the adult rat.
    Dumoulin A; Alonso G; Privat A; Feldblum S
    Eur J Neurosci; 1996 Dec; 8(12):2553-63. PubMed ID: 8996804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distribution, ontogeny and projections of cholecystokinin-8, vasoactive intestinal polypeptide and gamma-aminobutyrate-containing neuron systems in the rat spinal cord: an immunohistochemical analysis.
    Fuji K; Senba E; Fujii S; Nomura I; Wu JY; Ueda Y; Tohyama M
    Neuroscience; 1985 Mar; 14(3):881-94. PubMed ID: 3887208
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of gamma-aminobutyric acid (GABA)ergic neurons in cerebral cortical neurons in primary culture.
    Kuriyama K; Tomono S; Kishi M; Mukainaka T; Ohkuma S
    Brain Res; 1987 Jul; 416(1):7-21. PubMed ID: 2887249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GABA metabolism controls inhibition efficacy in the mammalian CNS.
    Golan H; Talpalar AE; Schleifstein-Attias D; Grossman Y
    Neurosci Lett; 1996 Oct; 217(1):25-8. PubMed ID: 8905731
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large motor neuron involvement in Stiff-man syndrome: a qualitative and quantitative study.
    Ishizawa K; Komori T; Okayama K; Qin X; Kaneko K; Sasaki S; Iwata M
    Acta Neuropathol; 1999 Jan; 97(1):63-70. PubMed ID: 9930896
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cholinergic neurons containing GABA-like and/or glutamic acid decarboxylase-like immunoreactivities in various brain regions of the rat.
    Kosaka T; Tauchi M; Dahl JL
    Exp Brain Res; 1988; 70(3):605-17. PubMed ID: 3384059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Orexin-A inhibits γ-aminobutyric acid current of neonatal rat spinal cord ventral horn neurons by activating OX
    Yang X; Zhu S; Jin N; Li Y; Zhen C; Zhang H; Xu A; Wang M; Zheng C
    Nan Fang Yi Ke Da Xue Xue Bao; 2021 May; 41(5):694-701. PubMed ID: 34134956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of the GABAergic phenotype in murine spinal cord-dorsal root ganglion cultures.
    Caserta MT; Barker JL
    Int J Dev Neurosci; 1994 Dec; 12(8):753-65. PubMed ID: 7747602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Presynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors modulate release of inhibitory amino acids in rat spinal cord dorsal horn.
    Engelman HS; Anderson RL; Daniele C; Macdermott AB
    Neuroscience; 2006 May; 139(2):539-53. PubMed ID: 16472927
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Loss of GABAergic interneurons in laminae I-III of the spinal cord dorsal horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury.
    Meisner JG; Marsh AD; Marsh DR
    J Neurotrauma; 2010 Apr; 27(4):729-37. PubMed ID: 20059302
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of gamma-aminobutyric acid release from synaptosomes by local anesthetics.
    Ikeda M; Dohi T; Tsujimoto A
    Anesthesiology; 1983 Jun; 58(6):495-9. PubMed ID: 6859579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glutamate decarboxylase activities in single vertebrate neurons.
    Murashima YL; Kato T
    J Neurochem; 1985 Sep; 45(3):732-8. PubMed ID: 4031858
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distribution and colocalisation of glutamate decarboxylase isoforms in the rat spinal cord.
    Mackie M; Hughes DI; Maxwell DJ; Tillakaratne NJ; Todd AJ
    Neuroscience; 2003; 119(2):461-72. PubMed ID: 12770560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of fenfluramine administration on synaptosomal uptake of some neurotransmitters and on synaptosomal enzymes which metabolise GABA.
    Kouyoumdjiian JC; Gonnard P; Belin MF
    Naunyn Schmiedebergs Arch Pharmacol; 1979 Oct; 309(1):7-11. PubMed ID: 42851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution of glycine, gamma-aminobutyric acid, glutamate decarboxylase, and gamma-aminobutyric acid transaminase in rabbit and mudpuppy retinas.
    Dick E; Lowry OH
    J Neurochem; 1984 May; 42(5):1274-80. PubMed ID: 6707631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Morphological and biochemical differences expressed in separate dissociated cell cultures of dorsal and ventral halves of the mouse spinal cord.
    Guthrie PB; Brenneman DE; Neale EA
    Brain Res; 1987 Sep; 420(2):313-23. PubMed ID: 3676764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acetylcholine system in the isolated ventral and dorsal horn neurons from bovine spinal cord.
    Takahashi Y; Kushiya E; Araki K; Wakabayashi M; Hoshiyama M
    Neurosci Lett; 1980 Jul; 18(3):261-6. PubMed ID: 7052497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.