These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 7280698)

  • 1. Modification of the discharge of vagal cardiac neurons during learned heart rate change.
    Gold MR; Cohen DH
    Science; 1981 Oct; 214(4518):345-7. PubMed ID: 7280698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The discharge characteristics of vagal cardiac neurons during classically conditioned heart rate change.
    Gold MR; Cohen DH
    J Neurosci; 1984 Dec; 4(12):2963-71. PubMed ID: 6502215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of the discharge of lateral geniculate neurons during visual learning.
    Gibbs CM; Cohen DH; Broyles JL
    J Neurosci; 1986 Mar; 6(3):627-36. PubMed ID: 3958787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of neuronal discharge along the ascending tectofugal pathway during visual conditioning.
    Wall JT; Gibbs CM; Broyles JL; Cohen DH
    Brain Res; 1985 Sep; 342(1):67-76. PubMed ID: 4041818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Invariance of retinal output during visual learning.
    Wild JM; Cohen DH
    Brain Res; 1985 Apr; 331(1):127-35. PubMed ID: 3986556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a vertebrate experimental model for cellular neurophysiologic studies of learning.
    Cohen DH
    Cond Reflex; 1969; 4(2):61-80. PubMed ID: 5346854
    [No Abstract]   [Full Text] [Related]  

  • 7. Vagal and sympathetic components of conditioned cardioacceleration in the pigeon.
    Cohen DH; Pitts LH
    Brain Res; 1968 Jun; 9(1):15-31. PubMed ID: 5699819
    [No Abstract]   [Full Text] [Related]  

  • 8. Training and testing determinants of short-term associative suppression of phototaxic behavior in Hermissenda.
    Grover L; Farley J; Vold L
    Behav Neural Biol; 1987 May; 47(3):275-306. PubMed ID: 3606529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological and electron microscopic analysis of the vagus nerve of the pigeon, with particular reference to the cardiac innervation.
    Schwaber JS; Cohen DH
    Brain Res; 1978 May; 147(1):65-78. PubMed ID: 656917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor and sensory re-innervation of the lung and heart after re-anastomosis of the cervical vagus nerve in rats.
    Bregeon F; Alliez JR; Héry G; Marqueste T; Ravailhe S; Jammes Y
    J Physiol; 2007 Jun; 581(Pt 3):1333-40. PubMed ID: 17430986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in vagal phasic chronotropic responses with sympathetic stimulation in the dog.
    Stuesse SL; Wallick DW; Zieske H; Levy MN
    Am J Physiol; 1981 Dec; 241(6):H850-6. PubMed ID: 7325253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRH signalling in the bed nucleus of the stria terminalis is involved in stress-induced cardiac vagal activation in conscious rats.
    Nijsen MJ; Croiset G; Diamant M; De Wied D; Wiegant VM
    Neuropsychopharmacology; 2001 Jan; 24(1):1-10. PubMed ID: 11106870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vagal and sympathetic effects on the pacemaker fibers in the sinus venosus of the heart.
    HUTTER OF; TRAUTWEIN W
    J Gen Physiol; 1956 May; 39(5):715-33. PubMed ID: 13319658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of cardiac sympathetic and vagal efferent activity during reflex responses produced by stretch of the atria.
    Kollai M; Koizumi K; Yamashita H; Brooks CM
    Brain Res; 1978 Jul; 150(3):519-32. PubMed ID: 678988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droperidol inhibits cardiac vagal efferents in dogs.
    Nashan B; Inoue K; Arndt JO
    Br J Anaesth; 1984 Nov; 56(11):1259-66. PubMed ID: 6487445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are associative changes in acquisition and extinction negatively accelerated?
    Rescorla RA
    J Exp Psychol Anim Behav Process; 2001 Oct; 27(4):307-15. PubMed ID: 11676082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cardiac vagotomy on heart rate conditioned responses in cats.
    Giavelli A; Astorga L; Santibáñez-H G
    Acta Neurobiol Exp (Wars); 1977; 37(3):179-90. PubMed ID: 899890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of non-adrenergic inhibition of cardiac vagal action on peak frequency of sympathetic stimulation in the dog.
    Gardner TD; Potter EK
    J Physiol; 1988 Nov; 405():115-22. PubMed ID: 3255790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic and neurotransmitter activation of cardiac vagal neurons in the nucleus ambiguus.
    Wang J; Irnaten M; Neff RA; Venkatesan P; Evans C; Loewy AD; Mettenleiter TC; Mendelowitz D
    Ann N Y Acad Sci; 2001 Jun; 940():237-46. PubMed ID: 11458681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional significance of coactivation of vagal and sympathetic cardiac nerves.
    Koizumi K; Terui N; Kollai M; Brooks CM
    Proc Natl Acad Sci U S A; 1982 Mar; 79(6):2116-20. PubMed ID: 6952259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.