These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 728080)

  • 41. The role of quinine in haemolysis.
    GREWAL RS
    Br J Pharmacol Chemother; 1958 Jun; 13(2):175-7. PubMed ID: 13536282
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Erythropoiesis-stimulating factor(s), erythropoiesis and erythrocyte 2,3-diphosphoglycerate in young rabbits with marked post-natal fall in haemoglobin.
    Holter PH; Sanengen T; Halvorsen S; Refsum HE
    Acta Physiol Scand; 1986 Apr; 126(4):583-7. PubMed ID: 3716834
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure in nucleated erythrocytes.
    DAVIES HG
    J Biophys Biochem Cytol; 1961 Mar; 9(3):671-87. PubMed ID: 13720098
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ascorbic acid improves membrane fragility and decreases haemolysis during red blood cell storage.
    Raval JS; Fontes J; Banerjee U; Yazer MH; Mank E; Palmer AF
    Transfus Med; 2013 Apr; 23(2):87-93. PubMed ID: 23406333
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [H2O2-formation during hemoglobin oxidation by phenylhydroxylamine in erythrocytes].
    Ellederová D; Wagner J; Kácl K
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1968; 260(2):109-10. PubMed ID: 4239149
    [No Abstract]   [Full Text] [Related]  

  • 46. [Action of vitamin D and E on the erythrocyte membrane. II. Morphological changes in the erythrocytes studied by transmission electron microscopy].
    Cicero R; Callari D; Sichel G; Billitteri A
    Acta Vitaminol Enzymol; 1978; 32(1-4):32-40. PubMed ID: 227257
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hemolysis assessment and antioxidant activity evaluation modified in an oxidized erythrocyte model.
    Xu X; He J; Liu G; Diao X; Cao Y; Ye Q; Xu G; Mao W
    J Agric Food Chem; 2014 Mar; 62(9):2056-61. PubMed ID: 24559119
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Extracellular vesicles in the circulation: are erythrocyte microvesicles a confounder in the plasma haemoglobin assay?
    de Vooght KM; Lau C; de Laat PP; van Wijk R; van Solinge WW; Schiffelers RM
    Biochem Soc Trans; 2013 Feb; 41(1):288-92. PubMed ID: 23356299
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of added dietary taurine on erythrocyte lipids and oxidative stress in rabbits fed a high cholesterol diet.
    Balkan J; Oztezcan S; Aykaç-Toker G; Uysal M
    Biosci Biotechnol Biochem; 2002 Dec; 66(12):2701-5. PubMed ID: 12596871
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The production of hydroxamic acid metabolites of nitrosobenzene by Chlorella pyrenoidosa.
    Corbett MD; Chipko BR; Paul JH
    J Environ Pathol Toxicol; 1978; 1(3):259-66. PubMed ID: 722193
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ligands and oxidants in ferrihemochrome formation and oxidative hemolysis.
    Itano HA; Hirota K; Vedvick TS
    Proc Natl Acad Sci U S A; 1977 Jun; 74(6):2556-60. PubMed ID: 267949
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Powerful protective role of 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde against erythrocyte oxidative-induced hemolysis.
    Paiva-Martins F; Fernandes J; Santos V; Silva L; Borges F; Rocha S; Belo L; Santos-Silva A
    J Agric Food Chem; 2010 Jan; 58(1):135-40. PubMed ID: 19954214
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Kinetics of hemoglobin formation. X. Reduction of nitrosobenzene in the erythrocytes].
    DANNENBERG H; KIESE M
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1950; 211(4):411-20. PubMed ID: 14790722
    [No Abstract]   [Full Text] [Related]  

  • 54. Member-associated changes during erythropoiesis. On the mechanism of maturation of reticulocytes to erythrocytes.
    Zweig SE; Tokuyasu KT; Singer SJ
    J Supramol Struct Cell Biochem; 1981; 17(2):163-81. PubMed ID: 7321058
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The metabolism of 4-aminobiphenyl in rat. IV. Ferrihaemoglobin formation by 4-aminobiphenyl metabolites.
    Karreth S; Lenk W
    Xenobiotica; 1991 Jul; 21(7):971-7. PubMed ID: 1776272
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Useful agents for the study of glutathione metabolism in erythroyctes. Organic hydroperoxides.
    Srivastava SK; Awasthi YC; Beutler E
    Biochem J; 1974 May; 139(2):289-95. PubMed ID: 4447610
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. Effects of the hexose monophosphate shunt as mediated by glutathione and ascorbate.
    Trotta RJ; Sullivan SG; Stern A
    Biochem J; 1982 May; 204(2):405-15. PubMed ID: 7115337
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Reduction of nitrosobenzene in the erythrocytes].
    DANNENBERG H
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1950; 212(1-2):102-3. PubMed ID: 14811420
    [No Abstract]   [Full Text] [Related]  

  • 59. [Hemoglobin oxidation and erythrocyte hemolysis induced by a synthetic analog of alpha-tocopherol not containing an isoprenoid chain].
    Neshev NI; Bogdanova IuG; Radchenko EV; Sarycheva IK
    Izv Akad Nauk SSSR Biol; 1989; (2):290-3. PubMed ID: 2745862
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of lysophosphatidylcholine on salt permeability through the erythrocyte membrane under haemolytic conditions.
    Eskelinen S
    Gen Physiol Biophys; 1986 Dec; 5(6):637-47. PubMed ID: 3557104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.