These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 728086)

  • 1. The membrane potential of mouse ascites-tumour cells studied with the fluorescent probe 3,3'-dipropyloxadicarbocyanine. Amplitude of the depolarization caused by amino acids.
    Philo RD; Eddy AA
    Biochem J; 1978 Sep; 174(3):801-10. PubMed ID: 728086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equilibrium and steady-state models of the coupling between the amino acid gradient and the sodium electrochemical gradient in mouse ascites- tumour cells.
    Philo RD; Eddy AA
    Biochem J; 1978 Sep; 174(3):811-7. PubMed ID: 728087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The accumulation of amino acids by mouse ascites-tumour cells. Dependence on but lack of equilibrium with the sodium-ion electrochemical gradient.
    Hacking C; Eddy AA
    Biochem J; 1981 Feb; 194(2):415-26. PubMed ID: 7305998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring membrane potentials in Ehrlich ascites tumor cells by means of a fluorescent dye.
    Laris PC; Pershadsingh HA; Johnstone RM
    Biochim Biophys Acta; 1976 Jun; 436(2):475-88. PubMed ID: 1276225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid absorption by mouse ascites-tumour cells depleted of both endogenous amino acids and adenosine triphosphate.
    Morville M; Reid M; Eddy AA
    Biochem J; 1973 May; 134(1):11-26. PubMed ID: 4723218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionophore-mediated coupling between ion fluxes and amino acid absorption in mouse ascites-tumour cells. Restoration of the physiological gradients of methionine by valinomycin in the absence of adenosine triphosphate.
    Reid M; Gibb LE; Eddy AA
    Biochem J; 1974 Jun; 140(3):383-93. PubMed ID: 4141255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ouabain on amino acid uptake by mouse ascites-tumour cells in the presence of nigericin.
    Johnson E; Eddy AA
    Biochem J; 1985 Mar; 226(3):773-9. PubMed ID: 3985945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane potentials in respiring and respiration-deficient yeasts monitored by a fluorescent dye.
    Kováĉ L; Vareĉka L
    Biochim Biophys Acta; 1981 Sep; 637(2):209-16. PubMed ID: 7028114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of ionophores on the fluorescence of the cation 3,3'-dipropyloxadicarbocyanine in the presence of pigeon erythrocytes, erythrocyte 'ghosts' or liposomes.
    Kimmich GA; Philo RD; Eddy AA
    Biochem J; 1977 Oct; 168(1):81-90. PubMed ID: 74249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sources of energy for the transport of potassium and sodium across the membrane of the Ehrlich mouse ascites tumor cell.
    Hempling HG
    Bibl Laeger; 1966 Mar; 112(3):503-18. PubMed ID: 5912019
    [No Abstract]   [Full Text] [Related]  

  • 11. The use of potential-sensitive cyanine dye for studying ion-dependent electrogenic renal transport of organic solutes. Spectrophotometric measurements.
    Kragh-Hansen U; Jørgensen KE; Sheikh MI
    Biochem J; 1982 Nov; 208(2):359-68. PubMed ID: 7159404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial membrane potential in lymphocytes as monitored by fluorescent cation diS-C3-(5).
    Gulyaeva NV; Konoshenko GI; Mokhova EN
    Membr Biochem; 1985; 6(1):19-32. PubMed ID: 4033446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of a cyanine dye in measuring membrane potential in yeast.
    Peña A; Uribe S; Pardo JP; Borbolla M
    Arch Biochem Biophys; 1984 May; 231(1):217-25. PubMed ID: 6372694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of inhibition on the endogenous respiration of Ehrlich ascites tumor cells by the cyanine dye diS-C3-(5).
    Okimasu E; Akiyama J; Shiraishi N; Utsumi K
    Physiol Chem Phys; 1979; 11(5):425-33. PubMed ID: 161623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane potentials in mitochondrial preparations as measured by means of a cyanine dye.
    Laris PC; Bahr DP; Chaffee RR
    Biochim Biophys Acta; 1975 Mar; 376(3):415-25. PubMed ID: 1125220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion diffusion potentials across mycoplasma membranes determined by a novel method using a carbocyanine dye.
    Schummer U; Schiefer HG
    Arch Biochem Biophys; 1986 Feb; 244(2):553-62. PubMed ID: 3947080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of a potential-sensitive cyanine dye for studying ion-dependent electrogenic renal transport of organic solutes. Uptake of L-malate and D-malate by luminal-membrane vesicles.
    Kragh-Hansen U; Jørgensen KE; Sheikh MI
    Biochem J; 1982 Nov; 208(2):369-76. PubMed ID: 7159405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of the fluorescent probe, 3,3'-dipropylthiodicarbocyanine iodide, on the membrane potential of Ehrlich ascites tumor cells.
    Smith TC; Robinson SC
    Biochem Biophys Res Commun; 1980 Jul; 95(2):722-7. PubMed ID: 7417285
    [No Abstract]   [Full Text] [Related]  

  • 19. Stoicheiometrical proton and potassium ion movements accompanying the absorption of amino acids by the yeast Saccharomyces carlsbergensis.
    Eddy AA; Nowacki JA
    Biochem J; 1971 May; 122(5):701-11. PubMed ID: 5129266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of mitochondrial photosensitization by the cationic dye, N,N-bis(2-ethyl-1,3-dioxylene)kryptocyanine (EDKC): preferential inactivation of complex I in the electron transport chain.
    Ara G; Aprille JR; Malis CD; Kane SB; Cincotta L; Foley J; Bonventre JV; Oseroff AR
    Cancer Res; 1987 Dec; 47(24 Pt 1):6580-5. PubMed ID: 3119197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.