These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 7281221)

  • 1. [Effect of a 50-Hz electromagnetic field on cell passage of mitotic cycle periods].
    Panchuk AS; Kachura VS; Dyshlovoĭ VD
    Tsitol Genet; 1981; 15(4):19-22. PubMed ID: 7281221
    [No Abstract]   [Full Text] [Related]  

  • 2. [Effect of an industrial-frequency electromagnetic field on the nature of the growth and mitotic activity of cultured human fibroblast-like cells].
    Dyshlovoĭ VD; Panchuk AS; Kachura VS
    Tsitol Genet; 1981; 15(3):9-12. PubMed ID: 7256838
    [No Abstract]   [Full Text] [Related]  

  • 3. [Dynamics of human lymphocyte passage through the 1st 2 mitotic cycles after irradiation at different stages].
    Poriadkova NA
    Radiobiologiia; 1981; 21(5):712-5. PubMed ID: 7313091
    [No Abstract]   [Full Text] [Related]  

  • 4. Bioeffects of extremely low-frequency electromagnetic fields. Variation with intensity, waveform, and individual or combined electric and magnetic fields.
    Goodman EM; Greenebaum B; Marron MT
    Radiat Res; 1979 Jun; 78(3):485-501. PubMed ID: 451168
    [No Abstract]   [Full Text] [Related]  

  • 5. [Proliferation of bone marrow cells upon exposure to constant magnetic fields of ultra-high strength].
    Strzhizhovskiĭ AD; Galaktionova GV
    Tsitologiia; 1978 Jun; 20(6):717-20. PubMed ID: 695003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of low-level, 60-Hz electromagnetic fields on human lymphoid cells: I. Mitotic rate and chromosome breakage in human peripheral lymphocytes.
    Cohen MM; Kunska A; Astemborski JA; McCulloch D; Paskewitz DA
    Bioelectromagnetics; 1986; 7(4):415-23. PubMed ID: 3801065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative effects of ionizing radiations on cycle time and mitotic duration. A time-lapse cinematography study.
    d'Hooghe MC; Hemon D; Valleron AJ; Malaise EP
    Radiat Res; 1980 Mar; 81(3):384-92. PubMed ID: 7360890
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of a strong magnetostatic field on proliferation of duodenal epithelial cells in mice.
    Mastryukova VM; Rudneva SV
    Biol Bull Acad Sci USSR; 1978; 5(3):371-4. PubMed ID: 751701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applied AC and DC magnetic fields cause alterations in the mitotic cycle of early sea urchin embryos.
    Levin M; Ernst SG
    Bioelectromagnetics; 1995; 16(4):231-40. PubMed ID: 7488256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [In vitro studies of the effect of a pulsed electromagnetic field on normal and cancer cells].
    Rius C; Alvarez-Rodríguez Y; Valladares Y
    Rev Esp Oncol; 1985; 32(1):55-84. PubMed ID: 3843005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of extremely low frequency electromagnetic fields on apoptosis and cell cycle of mouse brain and liver cells].
    Liu Y; Hong R; Yu YM; Weng EQ
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2003 Oct; 21(5):339-41. PubMed ID: 14761394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical models of radiation-induced mitotic delay: time course analysis and statistics of lesions.
    Gudowska-Nowak E; Kleczkowski A; Kraft G; Nasonova E; Ritter S; Scholz M
    Phys Med; 2001; 17 Suppl 1():161-3. PubMed ID: 11771545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient suppression of X-ray-induced apoptosis by exposure to power frequency magnetic fields in MCF-7 cells.
    Ding GR; Nakahara T; Tian FR; Guo Y; Miyakoshi J
    Biochem Biophys Res Commun; 2001 Sep; 286(5):953-7. PubMed ID: 11527392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells.
    Sun LY; Hsieh DK; Yu TC; Chiu HT; Lu SF; Luo GH; Kuo TK; Lee OK; Chiou TW
    Bioelectromagnetics; 2009 May; 30(4):251-60. PubMed ID: 19204973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Biological effects of electromagnetic fields on model organism yeast].
    Chen GD; Xu ZP; Jiang H
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2005 Jun; 23(3):235-7. PubMed ID: 16124918
    [No Abstract]   [Full Text] [Related]  

  • 16. A mathematical model for cell cycle progression under continuous low-dose-rate irradiation.
    Zaider M; Minerbo GN
    Radiat Res; 1993 Jan; 133(1):20-6. PubMed ID: 8434109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of an electromagnetic field on the function of the cardiovascular system].
    Matiushin IF; Bulanov GA
    Vopr Kurortol Fizioter Lech Fiz Kult; 1987; (4):4-7. PubMed ID: 3686876
    [No Abstract]   [Full Text] [Related]  

  • 18. The radiation hypersensitivity of cells at mitosis.
    Stobbe CC; Park SJ; Chapman JD
    Int J Radiat Biol; 2002 Dec; 78(12):1149-57. PubMed ID: 12556342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of a permanent electromagnetic field on experimental allergic skin reactions].
    Dovzhanskiĭ SI; Suvorov AP
    Vopr Kurortol Fizioter Lech Fiz Kult; 1979; (1):63-4. PubMed ID: 425362
    [No Abstract]   [Full Text] [Related]  

  • 20. First cell cycles of sea urchin Paracentrotus lividus are dramatically impaired by exposure to extremely low-frequency electromagnetic field.
    Ravera S; Falugi C; Calzia D; Pepe IM; Panfoli I; Morelli A
    Biol Reprod; 2006 Dec; 75(6):948-53. PubMed ID: 16957026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.