These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 7281247)
21. Pentose phosphate pathway of erythrocytes in uremia. Markkanen T; Peltola O; Forsström J; Himanen P Acta Haematol; 1972; 48(5):269-77. PubMed ID: 4630658 [No Abstract] [Full Text] [Related]
22. [Activities of dehydrogenases of the pentose phosphate pathway and transketolase in transplanted mouse hepatomas with different growth rates and in organs of tumor carriers]. Birk RV; Shapot VS Biokhimiia; 1979 May; 44(5):892-6. PubMed ID: 454718 [TBL] [Abstract][Full Text] [Related]
25. Interrelationship between glycolysis and the anaerobic part of the pentose phosphate pathway of carbohydrate metabolism in the myocardium. Severin SE; Stepanova NG Adv Enzyme Regul; 1980; 19():235-55. PubMed ID: 6278866 [No Abstract] [Full Text] [Related]
26. [Pentose phosphate synthesis in cardiac muscle and the role of erythrose-4-phosphate in the process]. Severin SE; Stepanova NG Biokhimiia; 1973; 38(3):583-8. PubMed ID: 4780953 [No Abstract] [Full Text] [Related]
27. Behavior of transaldolase (EC 2.2.1.2) and transketolase (EC 2.2.1.1) Activities in normal, neoplastic, differentiating, and regenerating liver. Heinrich PC; Morris HP; Weber G Cancer Res; 1976 Sep; 36(9 pt.1):3189-97. PubMed ID: 10080 [TBL] [Abstract][Full Text] [Related]
28. Quantitative measurement of the L-type pentose phosphate cycle with [2-14C]glucose and [5-14C]glucose in isolated hepatocytes. Longenecker JP; Williams JF Biochem J; 1980 Jun; 188(3):859-65. PubMed ID: 7470039 [TBL] [Abstract][Full Text] [Related]
29. [Pentose phosphate pathway and nucleic acid metabolism in red and white muscles of fish]. Kudriavtseva GV; Khebentiaeva TN Biokhimiia; 1977 Nov; 42(11):1934-8. PubMed ID: 588629 [TBL] [Abstract][Full Text] [Related]
32. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae. Matsushika A; Goshima T; Fujii T; Inoue H; Sawayama S; Yano S Enzyme Microb Technol; 2012 Jun; 51(1):16-25. PubMed ID: 22579386 [TBL] [Abstract][Full Text] [Related]
33. Use of [2-14C]glucose and [5-14C]glucose for evaluating the mechanism and quantitative significance of the 'liver-cell' pentose cycle. Longenecker JP; Williams JF Biochem J; 1980 Jun; 188(3):847-57. PubMed ID: 7470038 [TBL] [Abstract][Full Text] [Related]
34. High control coefficient of transketolase in the nonoxidative pentose phosphate pathway of human erythrocytes: NMR, antibody, and computer simulation studies. Berthon HA; Kuchel PW; Nixon PF Biochemistry; 1992 Dec; 31(51):12792-8. PubMed ID: 1463749 [TBL] [Abstract][Full Text] [Related]
35. [The pentose phosphate pathway and NADP-dependent glycerol-3-phosphate dehydrogenase activity in some tissues of albino rat]. Glushankov EP; Epifanova IuE; Kolotilova AI Biokhimiia; 1976 Oct; 41(10):1788-90. PubMed ID: 1024580 [TBL] [Abstract][Full Text] [Related]
36. [Phosphate inhibition of the conversion of ribose-1-phosphate--a product of purine nucleoside phosphorylase splitting in the phosphoribomutase reaction]. Golovatskiĭ ID; Tsegel'skiĭ AA Ukr Biokhim Zh (1978); 1987; 59(5):45-9. PubMed ID: 2825385 [TBL] [Abstract][Full Text] [Related]
37. Changes in pathways of pentose phosphate formation in relation to phosphoribosyl pyrophosphate synthesis in the developing rat kidney. Effects of glucose concentration and electron acceptors. Sochor M; Kunjara S; Greenbaum AL; McLean P J Dev Physiol; 1989 Sep; 12(3):135-43. PubMed ID: 2483165 [TBL] [Abstract][Full Text] [Related]
38. Role of thiamine status and genetic variability in transketolase and other pentose phosphate cycle enzymes in the progression of diabetic nephropathy. Pácal L; Tomandl J; Svojanovsky J; Krusová D; Stepánková S; Rehorová J; Olsovsky J; Belobrádková J; Tanhäuserová V; Tomandlová M; Muzík J; Kanková K Nephrol Dial Transplant; 2011 Apr; 26(4):1229-36. PubMed ID: 20826743 [TBL] [Abstract][Full Text] [Related]
39. NADPH production in the oxidative pentose phosphate pathway as source of reducing equivalents in glycolysis of human red cells in vitro. Rapoport I; Elsner R; Müller M; Dumdey R; Rapoport S Acta Biol Med Ger; 1979; 38(7):901-8. PubMed ID: 44419 [TBL] [Abstract][Full Text] [Related]