These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 728194)
61. Mechanism of induction of hepatic drug-metabolizing enzymes by ethanol-I. Limited role of microsomal phospholipids. Joly JG; Hétu C; Mavier P; Villeneuve JP Biochem Pharmacol; 1976 Sep; 25(17):1995-2001. PubMed ID: 825124 [No Abstract] [Full Text] [Related]
62. Interactions of methoxychlor, methoxychlor base-soluble contaminant, and 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane with rat uterine estrogen receptor. Bulger WH; Muccitelli RM; Kupfer D J Toxicol Environ Health; 1978; 4(5-6):881-93. PubMed ID: 731734 [TBL] [Abstract][Full Text] [Related]
63. Interactions between CYP2C9 and CYP2C19 in reconstituted binary systems influence their catalytic activity: possible rationale for the inability of CYP2C19 to catalyze methoxychlor demethylation in human liver microsomes. Hazai E; Kupfer D Drug Metab Dispos; 2005 Jan; 33(1):157-64. PubMed ID: 15486075 [TBL] [Abstract][Full Text] [Related]
64. Constituents of Cannabis sativa L. XXI: Estrogenic activity of a non-cannabinoid constituent. Wirth PW; Murphy JC; El-Feraly FS; Turner CE Experientia; 1981 Nov; 37(11):1181-2. PubMed ID: 7319003 [No Abstract] [Full Text] [Related]
65. Teratogenicity studies on linuron, malathion, and methoxychlor in rats. Khera KS; Whalen C; Trivett G Toxicol Appl Pharmacol; 1978 Aug; 45(2):435-44. PubMed ID: 705783 [No Abstract] [Full Text] [Related]
66. Methoxychlor metabolism in goats. 2. Metabolites in bile and movement through skin. Davison KL; Lamoureux CH; Feil VJ J Agric Food Chem; 1983; 31(1):164-6. PubMed ID: 6826912 [No Abstract] [Full Text] [Related]
67. The effect of methoxychlor on periphyton under natural conditions. Meler PG; Hecker LH Bull Environ Contam Toxicol; 1977 Sep; 18(3):370-7. PubMed ID: 907862 [No Abstract] [Full Text] [Related]
69. Excretion of methoxychlor in cow milk following dermal application. Skaare JU; Berge G; Odegaard S; Grave K Acta Vet Scand; 1982; 23(1):16-23. PubMed ID: 7113866 [TBL] [Abstract][Full Text] [Related]
70. The Alginate Immobilization of Metabolic Enzymes Platform Retrofits an Estrogen Receptor Transactivation Assay With Metabolic Competence. Deisenroth C; DeGroot DE; Zurlinden T; Eicher A; McCord J; Lee MY; Carmichael P; Thomas RS Toxicol Sci; 2020 Dec; 178(2):281-301. PubMed ID: 32991717 [TBL] [Abstract][Full Text] [Related]
71. Quantification of the Uncertainties in Extrapolating From In Vitro Androgen Receptor Antagonism to In Vivo Hershberger Assay Endpoints and Adverse Reproductive Development in Male Rats. Gray LE; Furr JR; Lambright CS; Evans N; Hartig PC; Cardon MC; Wilson VS; Hotchkiss AK; Conley JM Toxicol Sci; 2020 Aug; 176(2):297-311. PubMed ID: 32421828 [TBL] [Abstract][Full Text] [Related]
72. Development of a Generic Physiologically Based Kinetic Model to Predict In Vivo Uterotrophic Responses Induced by Estrogenic Chemicals in Rats Based on In Vitro Bioassays. Zhang M; van Ravenzwaay B; Rietjens IMCM Toxicol Sci; 2020 Jan; 173(1):19-31. PubMed ID: 31626307 [TBL] [Abstract][Full Text] [Related]
73. A case study on the application of an expert-driven read-across approach in support of quantitative risk assessment of p,p'-dichlorodiphenyldichloroethane. Lizarraga LE; Dean JL; Kaiser JP; Wesselkamper SC; Lambert JC; Zhao QJ Regul Toxicol Pharmacol; 2019 Apr; 103():301-313. PubMed ID: 30794837 [TBL] [Abstract][Full Text] [Related]
74. A Conflicted Tale of Two Novel AR Antagonists In Vitro and In Vivo: Pyrifluquinazon Versus Bisphenol C. Gray LE; Furr JR; Conley JM; Lambright CS; Evans N; Cardon MC; Wilson VS; Foster PM; Hartig PC Toxicol Sci; 2019 Apr; 168(2):632-643. PubMed ID: 30649549 [TBL] [Abstract][Full Text] [Related]
75. Investigation of mRNA expression changes associated with field exposure to DDTs in chickens from KwaZulu-Natal, South Africa. Thompson LA; Ikenaka Y; Darwish WS; Yohannes YB; van Vuren JJ; Wepener V; Smit NJ; Assefa AG; Tharwat A; Eldin WFS; Nakayama SMM; Mizukawa H; Ishizuka M PLoS One; 2018; 13(10):e0204400. PubMed ID: 30307967 [TBL] [Abstract][Full Text] [Related]
77. A Demonstration of the Uncertainty in Predicting the Estrogenic Activity of Individual Chemicals and Mixtures From an In Vitro Estrogen Receptor Transcriptional Activation Assay (T47D-KBluc) to the In Vivo Uterotrophic Assay Using Oral Exposure. Conley JM; Hannas BR; Furr JR; Wilson VS; Gray LE Toxicol Sci; 2016 Oct; 153(2):382-95. PubMed ID: 27473340 [TBL] [Abstract][Full Text] [Related]
78. Defining molecular sensors to assess long-term effects of pesticides on carcinogenesis. L'Héritier F; Marques M; Fauteux M; Gaudreau L Int J Mol Sci; 2014 Sep; 15(9):17148-61. PubMed ID: 25257533 [TBL] [Abstract][Full Text] [Related]
79. Exposure to endocrine disrupting chemicals and male reproductive health. Jeng HA Front Public Health; 2014; 2():55. PubMed ID: 24926476 [TBL] [Abstract][Full Text] [Related]
80. Dietary and environmental estrogens and antiestrogens and their possible role in human disease. Safe SH Environ Sci Pollut Res Int; 1994 Jan; 1(1):29-33. PubMed ID: 24234144 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]