These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 728230)
21. Microinjection of morphine into the rostral ventromedial medulla produces greater antinociception in male compared to female rats. Boyer JS; Morgan MM; Craft RM Brain Res; 1998 Jun; 796(1-2):315-8. PubMed ID: 9689486 [TBL] [Abstract][Full Text] [Related]
22. Spinal cholinergic and monoaminergic receptors mediate descending inhibition from the nuclei reticularis gigantocellularis and gigantocellularis pars alpha in the rat. Zhuo M; Gebhart GF Brain Res; 1990 Dec; 535(1):67-78. PubMed ID: 1981330 [TBL] [Abstract][Full Text] [Related]
23. Antinociception produced by microinjection of L-glutamate into the ventromedial medulla of the rat: mediation by spinal GABAA receptors. McGowan MK; Hammond DL Brain Res; 1993 Aug; 620(1):86-96. PubMed ID: 8104668 [TBL] [Abstract][Full Text] [Related]
24. Morphine analgesia and the bulbospinal serotonergic system: increase in concentration of 5-hydroxyindoleacetic acid in the rat spinal cord with analgesics. Shiomi H; Murakami H; Takagi H Eur J Pharmacol; 1978 Dec; 52(3-4):335-44. PubMed ID: 729643 [TBL] [Abstract][Full Text] [Related]
25. Excitation by morphine and enkephalin of single neurons of nucleus reticularis paragigantocellularis in the rat: a probable mechanism of analgesic action of opioids. Satoh M; Akaike A; Takagi H Brain Res; 1979 Jun; 169(2):406-10. PubMed ID: 221078 [No Abstract] [Full Text] [Related]
26. Selective depletion of spinal noradrenaline abolishes post-decapitation convulsions. Roberts DC; Mason ST; Fibiger HC Life Sci; 1978 Dec; 23(24):2411-3. PubMed ID: 745520 [No Abstract] [Full Text] [Related]
27. Separate involvement of the spinal noradrenergic and serotonergic systems in morphine analgesia: the differences in mechanical and thermal algesic tests. Kuraishi Y; Harada Y; Aratani S; Satoh M; Takagi H Brain Res; 1983 Aug; 273(2):245-52. PubMed ID: 6616237 [TBL] [Abstract][Full Text] [Related]
28. Spinal antinociception by adenosine analogs and morphine after intrathecal administration of the neurotoxins capsaicin, 6-hydroxydopamine and 5,7-dihydroxytryptamine. Sawynok J; Reid A; Nance D J Pharmacol Exp Ther; 1991 Jul; 258(1):370-80. PubMed ID: 1906540 [TBL] [Abstract][Full Text] [Related]
29. Analgesia mediated by a direct spinal action of narcotics. Yaksh TL; Rudy TA Science; 1976 Jun; 192(4246):1357-8. PubMed ID: 1273597 [TBL] [Abstract][Full Text] [Related]
30. The effects of spinal cord transection and intracisternal 6-hydroxydopamine on phenylethanolamine-N-methyl transferase (PNMT) activity in rat brain stem and spinal cord. Reid JL; Zivin JA; Kopin IJ J Neurochem; 1976 Mar; 26(3):629-31. PubMed ID: 1063254 [No Abstract] [Full Text] [Related]
31. Microinjection of morphine into nucleus reticularis paragigantocellularis of the rat: suppression of noxious-evoked activity of nucleus raphe magnus neurons. Heinricher MM; Rosenfeld JP Brain Res; 1985 Dec; 359(1-2):388-91. PubMed ID: 4075159 [TBL] [Abstract][Full Text] [Related]
32. Involvement of the periaqueductal grey matter and spinal 5-hydroxytryptaminergic pathways in morphine analgesia: effcts of lesions and 5-hydroxytryptamine depletion. Deakin JF; Dostrovsky JO Br J Pharmacol; 1978 May; 63(1):159-65. PubMed ID: 206302 [TBL] [Abstract][Full Text] [Related]
33. Analgesia produced by microinjection of baclofen and morphine at brain stem sites. Levy RA; Proudfit HK Eur J Pharmacol; 1979 Jul; 57(1):43-55. PubMed ID: 477741 [TBL] [Abstract][Full Text] [Related]
34. Effects of tyrosyl-arginine (kyotorphin), a new opioid dipeptide, on single neurons in the spinal dorsal horn of rabbits and the nucleus reticularis paragigantocellularis of rats. Satoh M; Kawajiri S; Yamamoto M; Akaike A; Ukai Y; Takagi H Neurosci Lett; 1980 Mar; 16(3):319-22. PubMed ID: 7052447 [TBL] [Abstract][Full Text] [Related]
35. Nuclei within the rostral ventromedial medulla mediating morphine antinociception from the periaqueductal gray. Urban MO; Smith DJ Brain Res; 1994 Jul; 652(1):9-16. PubMed ID: 7953726 [TBL] [Abstract][Full Text] [Related]
36. In vivo comparison of the receptor populations acted upon in the spinal cord by morphine and pentapeptides in the production of analgesia. Yaksh TL; Frederickson RC; Huang SP; Rudy TA Brain Res; 1978 Jun; 148(2):516-20. PubMed ID: 207391 [No Abstract] [Full Text] [Related]
37. Intravenous morphine-induced activation of vagal afferents: peripheral, spinal, and CNS substrates mediating inhibition of spinal nociception and cardiovascular responses. Randich A; Thurston CL; Ludwig PS; Robertson JD; Rasmussen C J Neurophysiol; 1992 Oct; 68(4):1027-45. PubMed ID: 1432065 [TBL] [Abstract][Full Text] [Related]
38. Morphine microinjected into the nucleus tractus solitarius and rostral ventrolateral medullary nucleus enhances somatosympathetic A- and C- reflexes in anesthetized rats. Li WM; Sato A; Sato Y; Schmidt RF Neurosci Lett; 1996 Dec; 221(1):53-6. PubMed ID: 9014179 [TBL] [Abstract][Full Text] [Related]
39. Antinociception produced by microinjection of morphine in the rat periaqueductal gray is enhanced in the foot, but not the tail, by intrathecal injection of alpha1-adrenoceptor antagonists. Fang F; Proudfit HK Brain Res; 1998 Apr; 790(1-2):14-24. PubMed ID: 9593804 [TBL] [Abstract][Full Text] [Related]
40. Effects of morphine on norepinephrine turnover in various functional regions of rat spinal cord. Karoum F; Commissiong J; Wyatt RJ Biochem Pharmacol; 1982 Oct; 31(19):3141-3. PubMed ID: 6293508 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]