These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 728234)

  • 1. Distinctive protein profiles obtained from extracts of normal and atherosclerotic human aorta.
    Gilbert DB; Dukes DF; Birinyi F
    Atherosclerosis; 1978 Oct; 31(2):137-53. PubMed ID: 728234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative alteration of some aortic intima proteins in fatty streaks and fibro-fatty lesions.
    Stastny JJ; Fosslien E
    Exp Mol Pathol; 1992 Dec; 57(3):205-14. PubMed ID: 1286671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collagen types in various layers of the human aorta and their changes with the atherosclerotic process.
    Murata K; Motayama T; Kotake C
    Atherosclerosis; 1986 Jun; 60(3):251-62. PubMed ID: 3089234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Staining properties of bovine low molecular weight hydrophobic surfactant proteins after polyacrylamide gel electrophoresis.
    Fan BR; Nguyen T; Waring A; Taeusch W
    Anal Biochem; 1990 Apr; 186(1):41-5. PubMed ID: 1694061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interstitial collagens in fibrous atherosclerotic lesions of human aorta.
    Leushner JR; Haust MD
    Pathol Biol (Paris); 1986 Jan; 34(1):14-8. PubMed ID: 3517767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of aging on human aortic protein composition. I. One-dimensional polyacrylamide gel electrophoretic analysis of tissue extracts.
    Song J; Stastny J; Fosslien E; Robertson AL
    Exp Mol Pathol; 1985 Oct; 43(2):233-41. PubMed ID: 4043342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variation in proteins of single lesions from the intima of the aorta from a human patient with severe atherosclerosis.
    Spencer A; Stahmann MA
    Atherosclerosis; 1977 Feb; 26(2):139-50. PubMed ID: 836351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyses of protein extracts of human breast cancers: changes in glycoprotein content linked to the malignant phenotype.
    Ng RC; Roberts AN; Wilson RG; Latner AL; Turner GA
    Br J Cancer; 1987 Mar; 55(3):249-54. PubMed ID: 2436644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein, glycoprotein and glycolipid profiles of human arterial and venous tissues.
    Moore CR; Gilbert DB
    Atherosclerosis; 1980 Mar; 35(3):267-75. PubMed ID: 7362700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [RNA content of cells isolated from normal and arteriosclerotic human aorta].
    Kosykh VA; Orekhov AN; Repin VS
    Biull Eksp Biol Med; 1982 May; 93(5):104-6. PubMed ID: 6178449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myosin heavy-chain isoform composition and distribution in developing and adult human aortic smooth muscle.
    Frid MG; Printesva OY; Chiavegato A; Faggin E; Scatena M; Koteliansky VE; Pauletto P; Glukhova MA; Sartore S
    J Vasc Res; 1993; 30(5):279-92. PubMed ID: 8399989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The immunological pattern of the water-soluble proteins and glycoproteins of the media layer of normal and atherosclerotic human aortas.
    Apostolakis M; Werber U; Voigt KD
    J Atheroscler Res; 1968; 8(5):847-54. PubMed ID: 5688381
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of aging on human aortic protein composition. II. Two-dimensional polyacrylamide gel electrophoretic analysis.
    Song J; Stastny J; Fosslien E; Robertson AL
    Exp Mol Pathol; 1985 Dec; 43(3):297-304. PubMed ID: 4065309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell proliferation in normal and atherosclerotic human aorta: proliferative splash in lipid-rich lesions.
    Orekhov AN; Andreeva ER; Mikhailova IA; Gordon D
    Atherosclerosis; 1998 Jul; 139(1):41-8. PubMed ID: 9699890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical analysis and mapping of atherosclerotic human artery using FT-IR microspectroscopy.
    Manoharan R; Baraga JJ; Rava RP; Dasari RR; Fitzmaurice M; Feld MS
    Atherosclerosis; 1993 Nov; 103(2):181-93. PubMed ID: 8292094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High resolution one-dimensional electrophoretic separation and partial characterisation of human head hair proteins.
    Khawar SL; Watson K; Jones GL
    Electrophoresis; 1995 Jan; 16(1):110-5. PubMed ID: 7737084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracts of human atherosclerotic lesions can modify low density lipoproteins leading to enhanced uptake by macrophages.
    Hoff HF; O'Neil J
    Atherosclerosis; 1988 Mar; 70(1-2):29-41. PubMed ID: 3355615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Murine retrovirus Pr65gag forms a 130K dimer in the absence of disulfide reducing agents.
    Yoshinaka Y; Katoh I; Luftig RB
    Virology; 1984 Jul; 136(2):274-81. PubMed ID: 6087546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin-associated glycoproteins of normal rat liver and Novikoff hepatoma ascites cells.
    Goldberg AH; Yeoman LC; Busch H
    Cancer Res; 1978 Apr; 38(4):1052-6. PubMed ID: 205344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell proliferation in normal and atherosclerotic human aorta. I. Flow cytofluorometric determination of cellular deoxyribonucleic acid content.
    Orekhov AN; Kosykh VA; Repin VS; Smirnov VN
    Lab Invest; 1983 Apr; 48(4):395-8. PubMed ID: 6834785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.