These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 7282937)

  • 41. Enhanced parenchymal arteriole tone and astrocyte signaling protect neurovascular coupling mediated parenchymal arteriole vasodilation in the spontaneously hypertensive rat.
    Iddings JA; Kim KJ; Zhou Y; Higashimori H; Filosa JA
    J Cereb Blood Flow Metab; 2015 Jul; 35(7):1127-36. PubMed ID: 25757753
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evidence of a slow-to-fast fiber type transition in skeletal muscle from spontaneously hypertensive rats.
    Ben Bachir-Lamrini L; Sempore B; Mayet MH; Favier RJ
    Am J Physiol; 1990 Feb; 258(2 Pt 2):R352-7. PubMed ID: 2309928
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of vasodilation on plasma distribution in SHR cremaster muscle microvessels.
    Baker CH; Wilmoth FR; Sutton ET
    Hypertension; 1983; 5(6):927-34. PubMed ID: 6197375
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Attenuated microvascular alterations in coarctation hypertension.
    Stacy DL; Prewitt RL
    Am J Physiol; 1989 Jan; 256(1 Pt 2):H213-21. PubMed ID: 2912185
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The microvasculature in skeletal muscle. VI. Adrenergic innervation of arterioles in normotensive and spontaneously hypertensive rats.
    Saltzman D; DeLano FA; Schmid-Schönbein GW
    Microvasc Res; 1992 Nov; 44(3):263-73. PubMed ID: 1479927
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Training-induced, pressure-lowering effect in SHR: wide effects on circulatory profile of exercised and nonexercised muscles.
    Melo RM; Martinho E; Michelini LC
    Hypertension; 2003 Oct; 42(4):851-7. PubMed ID: 12913057
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chapter 12. Structure of microvascular networks in genetic hypertension.
    Murfee WL; Schmid-Schönbein GW
    Methods Enzymol; 2008; 444():271-84. PubMed ID: 19007669
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microvascular effects of centrally acting antihypertensive drugs in spontaneously hypertensive rats.
    Nascimento AR; Lessa MA; Sabino B; Bousquet P; Tibiriçá E
    J Cardiovasc Pharmacol; 2010 Mar; 55(3):240-7. PubMed ID: 20040886
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Venule distension properties in Wistar, Wistar-Kyoto, and spontaneously hypertensive rats.
    Lang DJ; Johns BL
    Am J Physiol; 1987 Apr; 252(4 Pt 2):H714-20. PubMed ID: 3565589
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The microvasculature in skeletal muscle. III. Venous network anatomy in normotensive and spontaneously hypertensive rats.
    Engelson ET; Schmid-Schönbein GW; Zweifach BW
    Int J Microcirc Clin Exp; 1985; 4(3):229-48. PubMed ID: 4066180
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spontaneously hypertensive rats are resistant to the development of hypercholesterolemia.
    Lindberg RA; Schuschke DA; Miller FN
    Am J Hypertens; 1995 Oct; 8(10 Pt 1):1001-8. PubMed ID: 8845068
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparative morphometric analysis of cochlear vessels in Wistar-Kyoto rats, spontaneously hypertensive rats, and aged spontaneously hypertensive rats.
    Kappelmann RB; Prazma J; Pillsbury HC
    Otolaryngol Head Neck Surg; 1987 Dec; 97(6):522-8. PubMed ID: 2448726
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Contribution of fluid shear response in leukocytes to hemodynamic resistance in the spontaneously hypertensive rat.
    Fukuda S; Yasu T; Kobayashi N; Ikeda N; Schmid-Schönbein GW
    Circ Res; 2004 Jul; 95(1):100-8. PubMed ID: 15166092
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessment of muscle blood flow by laser-Doppler flowmetry during hemorrhage in SHR.
    Lombard JH; Roman RJ
    Am J Physiol; 1990 Sep; 259(3 Pt 2):H860-5. PubMed ID: 2204279
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Morphological alterations in skeletal muscle of spontaneously hypertensive rats.
    Hernández N; Torres SH; Losada M; Finol HJ
    Invest Clin; 2008 Mar; 49(1):79-91. PubMed ID: 18524334
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Captopril improves cerebrovascular structure and function in old hypertensive rats.
    Dupuis F; Atkinson J; Limiñana P; Chillon JM
    Br J Pharmacol; 2005 Feb; 144(3):349-56. PubMed ID: 15655534
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Angiogenesis in mesenteric microvascular networks from spontaneously hypertensive versus normotensive rats.
    Yang M; Aragon M; Murfee WL
    Microcirculation; 2011 Oct; 18(7):574-82. PubMed ID: 21627712
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Power dissipation as a measure of peripheral resistance in vascular networks.
    Borders JL; Granger HJ
    Hypertension; 1986 Mar; 8(3):184-91. PubMed ID: 3949373
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Alterations in the microvasculature of one-kidney, one-clip hypertensive rats.
    Hashimoto H; Prewitt RL; Efaw CW
    Am J Physiol; 1987 Oct; 253(4 Pt 2):H933-40. PubMed ID: 3661742
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pressure-independent arteriolar rarefaction in hypertension.
    Boegehold MA; Johnson MD; Overbeck HW
    Am J Physiol; 1991 Jul; 261(1 Pt 2):H83-7. PubMed ID: 1858934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.