These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7283946)

  • 1. Segmental metabolic responses of the canine coronary circulation.
    Fuchs M; Ertl G; Falcke A; Geiger M; Müller-Ruchholtz ER
    Basic Res Cardiol; 1981; 76(4):421-5. PubMed ID: 7283946
    [No Abstract]   [Full Text] [Related]  

  • 2. Alpha-adrenergic vasoconstriction in arterial and arteriolar sections of the canine coronary circulation.
    Ertl G; Fuchs M
    Basic Res Cardiol; 1980; 75(5):600-14. PubMed ID: 6255937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous adenosine modulates alpha 2- but not alpha 1-adrenergic constriction of coronary arterioles.
    DeFily DV; Patterson JL; Chilian WM
    Am J Physiol; 1995 Jun; 268(6 Pt 2):H2487-94. PubMed ID: 7611499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of constriction of large coronary arteries by beta-adrenergic receptor blockade.
    Vatner SF; Hintze TH
    Circ Res; 1983 Sep; 53(3):389-400. PubMed ID: 6883656
    [No Abstract]   [Full Text] [Related]  

  • 5. Relationship between hyperaemic response and viscoelastic properties in the coronary circulation of the dog.
    Guiot C; Losano G
    J Biomed Eng; 1991 Nov; 13(6):459-64. PubMed ID: 1770804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the selective thromboxane synthetase inhibitor, dazoxiben, on cyclic flow variations in stenosed canine coronary arteries.
    Bush LR; Campbell WB; Tilton GD; Buja LM; Willerson JT
    Trans Assoc Am Physicians; 1983; 96():103-12. PubMed ID: 6687298
    [No Abstract]   [Full Text] [Related]  

  • 7. Endothelium-dependent relaxation competes with alpha 1- and alpha 2-adrenergic constriction in the canine epicardial coronary microcirculation.
    Jones CJ; DeFily DV; Patterson JL; Chilian WM
    Circulation; 1993 Apr; 87(4):1264-74. PubMed ID: 8384938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurogenic influences on the coronary vascular response to ischemia in the awake dog.
    Bache RJ; Cobb FR; Ebert PA; Greenfield JC
    J Thorac Cardiovasc Surg; 1975 Mar; 69(3):421-8. PubMed ID: 1117733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of a decrease in perfusion pressure on the alpha-adrenergic reactions of the coronary vessels].
    Novikova EB; Serebriakova LI; Tskitishvili OV
    Kardiologiia; 1988 Aug; 28(8):79-82. PubMed ID: 2848968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuropeptide-Y. A peptide found in human coronary arteries constricts primarily small coronary arteries to produce myocardial ischemia in dogs.
    Maturi MF; Greene R; Speir E; Burrus C; Dorsey LM; Markle DR; Maxwell M; Schmidt W; Goldstein SR; Patterson RE
    J Clin Invest; 1989 Apr; 83(4):1217-24. PubMed ID: 2703530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of noradrenaline on reactive myocardial hyperemia in dogs].
    Golubykh VL; Pavlenko AIu; Trubetskoĭ AV
    Biull Eksp Biol Med; 1987 Mar; 103(3):264-6. PubMed ID: 3828496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of cinepazide, a vasoactive substance, on canine coronary circulation after acute constriction of the left anterior descending coronary artery.
    Brückner UB; Dietze W; Mittmann U; Schmier J; Wirth RH
    Arzneimittelforschung; 1976; 26(8):1569-74. PubMed ID: 1036954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increases in coronary vascular resistance related to high arterial oxygen tension in dogs.
    Ishikawa K; Kanamasa K; Yamakado T; Kohashi Y; Kato A; Otani S; Hayashi T; Katori R
    Jpn Circ J; 1980 Sep; 44(9):749-54. PubMed ID: 7411838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional consequences and intracoronary localization of alpha-adrenergic stimulation of the canine coronary circulation.
    Maturi MF; Greene R; Donohue B; Dorsey LM; Green MV; Bacharach SL; Vitale D; Patterson RE
    J Am Coll Cardiol; 1986 Oct; 8(4):885-93. PubMed ID: 2876017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of cardiac contraction on segmental coronary resistances and collateral perfusion.
    Heusch G; Yoshimoto N
    Int J Microcirc Clin Exp; 1983; 2(2):131-41. PubMed ID: 6678843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of low doses of endothelin-1 on basal vascular tone and autoregulatory vasodilation in canine coronary microcirculation in vivo.
    Wang Y; Kanatsuka H; Akai K; Sugimura A; Kumagai T; Komaru T; Sato K; Shirato K
    Jpn Circ J; 1999 Aug; 63(8):617-23. PubMed ID: 10478812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isoflurane and large coronary artery haemodynamics. A study in dogs.
    Cutfield GR; Francis CM; Foëx P; Jones LA; Ryder WA
    Br J Anaesth; 1988 Jun; 60(7):784-90. PubMed ID: 3395537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coronary steal mechanisms in dogs with one-vessel occlusion and other arteries normal.
    Patterson RE; Kirk ES
    Circulation; 1983 May; 67(5):1009-15. PubMed ID: 6831664
    [No Abstract]   [Full Text] [Related]  

  • 19. [Impaired regulation of myocardial blood supply with reduction of coronary vessel tonus].
    Novikova EB
    Vestn Akad Med Nauk SSSR; 1980; (1):76-81. PubMed ID: 7368858
    [No Abstract]   [Full Text] [Related]  

  • 20. Role of nitric oxide in the coronary microvascular responses to adenosine and increased metabolic demand.
    Jones CJ; Kuo L; Davis MJ; DeFily DV; Chilian WM
    Circulation; 1995 Mar; 91(6):1807-13. PubMed ID: 7882491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.