These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 728401)
1. Crystal and molecular structure of 2-thio-5 carboxymethyluridine and its methyl ester: helix terminator nucleosides in the first position of some anticodons. Hillen W; Egert E; Lindner HJ; Gassen HG Biochemistry; 1978 Nov; 17(24):5314-20. PubMed ID: 728401 [No Abstract] [Full Text] [Related]
2. Restriction or amplification of wobble recognition: the structure of 2-thio-5-methylaminomethyluridine and the interaction of odd uridines with the anticodon loop backbone. Hillen W; Egert E; Lindner HJ; Gassen HG FEBS Lett; 1978 Oct; 94(2):361-4. PubMed ID: 700157 [No Abstract] [Full Text] [Related]
3. Modified nucleosides and conformation of anticodon loops: crystal structure of t6A and g6A. Parthasarathy R; Ohrt JM; Chheda GB Biochemistry; 1977 Nov; 16(23):4999-5008. PubMed ID: 911810 [No Abstract] [Full Text] [Related]
4. Structural effects of hypermodified nucleosides in the Escherichia coli and human tRNALys anticodon loop: the effect of nucleosides s2U, mcm5U, mcm5s2U, mnm5s2U, t6A, and ms2t6A. Durant PC; Bajji AC; Sundaram M; Kumar RK; Davis DR Biochemistry; 2005 Jun; 44(22):8078-89. PubMed ID: 15924427 [TBL] [Abstract][Full Text] [Related]
5. 5-(carboxymethylaminomethyl)-2-thiouridine, a new modified nucleoside found at the first letter position of the anticodon. Yamada Y; Murao K; Ishikura H Nucleic Acids Res; 1981 Apr; 9(8):1933-9. PubMed ID: 7017599 [TBL] [Abstract][Full Text] [Related]
6. Syntheses of potential antimetabolites. XX. Syntheses of 5-carbomethoxymethyl- and 5-methylaminomethyl-2-thiouridine (the "first letters" of some anticodons) and closely related nucleosides from uridine. Ikeda K; Tanaka S; Mizuno Y Chem Pharm Bull (Tokyo); 1975 Nov; 23(11):2958-64. PubMed ID: 1218441 [No Abstract] [Full Text] [Related]
7. Desulfuration of 2-thiouridine with hydrogen peroxide in the physiological pH range 6.6-7.6 is pH-dependent and results in two distinct products. Sochacka E; Bartos P; Kraszewska K; Nawrot B Bioorg Med Chem Lett; 2013 Nov; 23(21):5803-5. PubMed ID: 24064499 [TBL] [Abstract][Full Text] [Related]
8. Genome recoding by tRNA modifications. Tuorto F; Lyko F Open Biol; 2016 Dec; 6(12):. PubMed ID: 27974624 [TBL] [Abstract][Full Text] [Related]
9. Crystal and molecular structure of the acetonide of 5-methylaminomethyl-2-thiouridine: a minor constituent of Escherichia coli tRNAs. Kasai H; Nishimura S; Vorbrüggen H; Iitaka Y FEBS Lett; 1979 Jul; 103(2):270-3. PubMed ID: 381021 [No Abstract] [Full Text] [Related]
10. Conformation and possible role of hypermodified nucleosides adjacent to 3'-end of anticodon in tRNA: N-(purin-6-ylcarbamoyl)-L-threonine riboside. Parthasarathy R; Ohrt JM; Chheda GB Biochem Biophys Res Commun; 1974 Sep; 60(1):211-8. PubMed ID: 4423161 [No Abstract] [Full Text] [Related]
11. Role of modified nucleosides in tRNA: effect of modification of the 2-thiouridine derivative located at the 5'-end of the anticodon of yeast transfer RNA Lys2. Sen GC; Ghosh HP Nucleic Acids Res; 1976 Mar; 3(3):523-35. PubMed ID: 775440 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and studies on the effect of 2-thiouridine and 4-thiouridine on sugar conformation and RNA duplex stability. Kumar RK; Davis DR Nucleic Acids Res; 1997 Mar; 25(6):1272-80. PubMed ID: 9092639 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of yeast phenylalanine transfer RNA. II. Structural features and functional implications. Holbrook SR; Sussman JL; Warrant RW; Kim SH J Mol Biol; 1978 Aug; 123(4):631-60. PubMed ID: 357743 [No Abstract] [Full Text] [Related]
14. Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. Effect of alteration of the 5-(methylaminomethyl)-2-thiouridine in the anticodon of glutamic acid transfer ribonucleic acid on the catalytic mechanism. Kern D; Lapointe J Biochemistry; 1979 Dec; 18(26):5819-26. PubMed ID: 229902 [No Abstract] [Full Text] [Related]
15. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction. Davanloo P; Sprinzl M; Cramer F Biochemistry; 1979 Jul; 18(15):3189-99. PubMed ID: 380644 [TBL] [Abstract][Full Text] [Related]
16. The synthesis of tRNA sup (UGA) anticodons with the 2-thiouridine derivatives as the 'first letter'. Małkiewicz AJ; Nawrot B; Sochacka E Nucleic Acids Symp Ser; 1987; (18):97-100. PubMed ID: 3697161 [TBL] [Abstract][Full Text] [Related]
17. Backbone-base interactions critical to quantum stabilization of transfer RNA anticodon structure. Witts RN; Hopson EC; Koballa DE; Van Boening TA; Hopkins NH; Patterson EV; Nagan MC J Phys Chem B; 2013 Jun; 117(25):7489-97. PubMed ID: 23742318 [TBL] [Abstract][Full Text] [Related]
18. The influence of the C5 substituent on the 2-thiouridine desulfuration pathway and the conformational analysis of the resulting 4-pyrimidinone products. Bartos P; Ebenryter-Olbinska K; Sochacka E; Nawrot B Bioorg Med Chem; 2015 Sep; 23(17):5587-94. PubMed ID: 26254829 [TBL] [Abstract][Full Text] [Related]
19. Transfer RNA: molecular structure, sequence, and properties. Rich A; RajBhandary UL Annu Rev Biochem; 1976; 45():805-60. PubMed ID: 60910 [No Abstract] [Full Text] [Related]
20. Studies of the complex between transfer RNA molecules and complementary anticodons: kinetic and thermodynamic aspects. Grosjean H; Söll D; Crothers D Arch Int Physiol Biochim; 1975 Dec; 83(5):970-1. PubMed ID: 58627 [No Abstract] [Full Text] [Related] [Next] [New Search]