These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 7284371)

  • 1. Na+-dependent, potential-sensitive L-ascorbate transport across brush border membrane vesicles from kidney cortex.
    Toggenburger G; Häusermann M; Mütsch B; Genoni G; Kessler M; Weber F; Hornig D; O'Neill B; Semenza G
    Biochim Biophys Acta; 1981 Sep; 646(3):433-43. PubMed ID: 7284371
    [No Abstract]   [Full Text] [Related]  

  • 2. Na+-independent L-arginine transport in rabbit renal brush border membrane vesicles.
    Hammerman MR
    Biochim Biophys Acta; 1982 Feb; 685(1):71-7. PubMed ID: 7059593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na+-dependent, electroneutral L-ascorbate transport across brush border membrane vesicles from guinea pig small intestine.
    Siliprandi L; Vanni P; Kessler M; Semenza G
    Biochim Biophys Acta; 1979 Mar; 552(1):129-42. PubMed ID: 435492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na+-dependent, electroneural L-ascorbate transport across brush border membrane vesicles from human small intestine: Inhibition by D-erythorbate.
    Toggenburger G; Landoldt M; Semenza G
    FEBS Lett; 1979 Dec; 108(2):473-6. PubMed ID: 520592
    [No Abstract]   [Full Text] [Related]  

  • 5. Sodium gradient-dependent L-glutamate transport in renal brush border membrane vesicles. Evidence for an electroneutral mechanism.
    Schneider EG; Hammerman MR; Sacktor B
    J Biol Chem; 1980 Aug; 255(16):7650-6. PubMed ID: 6156940
    [No Abstract]   [Full Text] [Related]  

  • 6. Biotin uptake mechanisms in brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex.
    Podevin RA; Barbarat B
    Biochim Biophys Acta; 1986 Apr; 856(3):471-81. PubMed ID: 3964692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal transport and metabolism of nicotinic acid.
    Schuette S; Rose RC
    Am J Physiol; 1986 May; 250(5 Pt 1):C694-703. PubMed ID: 3010728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulphate-ion/sodium-ion co-transport by brush-border membrane vesicles isolated from rat kidney cortex.
    Lücke H; Stange G; Murer H
    Biochem J; 1979 Jul; 182(1):223-9. PubMed ID: 91368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton gradient-dependent transport of glycine in rabbit renal brush-border membrane vesicles.
    Rajendran VM; Barry JA; Kleinman JG; Ramaswamy K
    J Biol Chem; 1987 Nov; 262(31):14974-7. PubMed ID: 2822708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for electroneutral chloride transport in rabbit renal cortical brush border membrane vesicles.
    Shiuan D; Weinstein SW
    Am J Physiol; 1984 Nov; 247(5 Pt 2):F837-47. PubMed ID: 6093593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloride dependence of the sodium-dependent glycine transport in pig kidney cortex brush-border membrane vesicles.
    Scalera V; Corcelli A; Frassanito A; Storelli C
    Biochim Biophys Acta; 1987 Sep; 903(1):1-10. PubMed ID: 3651446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of sodium-dependent and sodium-independent nucleoside transport systems in rabbit brush-border and basolateral plasma-membrane vesicles from the renal outer cortex.
    Williams TC; Doherty AJ; Griffith DA; Jarvis SM
    Biochem J; 1989 Nov; 264(1):223-31. PubMed ID: 2604712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-glutamate transport in renal plasma membrane vesicles.
    Sacktor B
    Mol Cell Biochem; 1981 Sep; 39():239-51. PubMed ID: 6118822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton-coupled transport of glycylglycine in rabbit renal brush-border membrane vesicles.
    Takuwa N; Shimada T; Matsumoto H; Hoshi T
    Biochim Biophys Acta; 1985 Mar; 814(1):186-90. PubMed ID: 2983762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Urate transport in brush-border membrane of human kidney.
    Roch-Ramel F; Werner D; Guisan B
    Am J Physiol; 1994 May; 266(5 Pt 2):F797-805. PubMed ID: 8203564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton gradients in renal cortex brush-border membrane vesicles. Demonstration of a rheogenic proton flux with acridine orange.
    Reenstra WW; Warnock DG; Yee VJ; Forte JG
    J Biol Chem; 1981 Nov; 256(22):11663-6. PubMed ID: 7298622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Taurine transport in renal brush-border-membrane vesicles.
    Rozen R; Tenenhouse HS; Scriver CR
    Biochem J; 1979 Apr; 180(1):245-8. PubMed ID: 486101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the coupling ratio for Na+ -H+ exchange in renal microvillus membrane vesicles.
    Kinsella JL; Aronson PS
    Biochim Biophys Acta; 1982 Jul; 689(1):161-4. PubMed ID: 7104347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective use of renal cortical slices in transport and metabolic studies.
    Rose RC; Bianchi J; Schuette SA
    Biochim Biophys Acta; 1985 Dec; 821(3):431-6. PubMed ID: 4074738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of ionophores to study Na+ transport pathways in renal microvillus membrane vesicles.
    Aronson PS; Kinsella JL
    Fed Proc; 1981 Jun; 40(8):2213-7. PubMed ID: 6263713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.