These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 728444)
1. Nitrogenase: properties of the catalytically inactive complex between the Azotobacter vinelandii MoFe protein and the Clostridium pasteurianum Fe protein. Emerich DW; Ljones T; Burris RH Biochim Biophys Acta; 1978 Dec; 527(2):359-69. PubMed ID: 728444 [TBL] [Abstract][Full Text] [Related]
2. Formation of a tight 1:1 complex of Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein: evidence for long-range interactions between the Fe protein binding sites during catalytic hydrogen evolution. Clarke TA; Maritano S; Eady RR Biochemistry; 2000 Sep; 39(37):11434-40. PubMed ID: 10985789 [TBL] [Abstract][Full Text] [Related]
3. Reductant-independent ATP hydrolysis catalyzed by homologous nitrogenase proteins from Azotobacter vinelandii and heterologous crosses with Clostridium pasteuranium. Larsen C; Christensen S; Watt GD Arch Biochem Biophys; 1995 Nov; 323(2):215-22. PubMed ID: 7487080 [TBL] [Abstract][Full Text] [Related]
4. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex. Lanzilotta WN; Fisher K; Seefeldt LC Biochemistry; 1996 Jun; 35(22):7188-96. PubMed ID: 8679547 [TBL] [Abstract][Full Text] [Related]
5. Analysis of steady state Fe and MoFe protein interactions during nitrogenase catalysis. Johnson JL; Nyborg AC; Wilson PE; Tolley AM; Nordmeyer FR; Watt GD Biochim Biophys Acta; 2000 Nov; 1543(1):24-35. PubMed ID: 11087938 [TBL] [Abstract][Full Text] [Related]
6. ADP-ribosylation of dinitrogenase reductase from Clostridium pasteurianum prevents its inhibition of nitrogenase from Azotobacter vinelandii. Murrell SA; Lowery RG; Ludden PW Biochem J; 1988 Apr; 251(2):609-12. PubMed ID: 3135803 [TBL] [Abstract][Full Text] [Related]
7. Evidence that MgATP accelerates primary electron transfer in a Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein nitrogenase tight complex. Chan JM; Ryle MJ; Seefeldt LC J Biol Chem; 1999 Jun; 274(25):17593-8. PubMed ID: 10364195 [TBL] [Abstract][Full Text] [Related]
8. Comparison of redox and EPR properties of the molybdenum iron proteins of Clostridium pasteurianum and Azotobacter vinelandii nitrogenases. Morgan TV; Mortenson LE; McDonald JW; Watt GD J Inorg Biochem; 1988 Jun; 33(2):111-20. PubMed ID: 2842451 [TBL] [Abstract][Full Text] [Related]
9. MgATP-Bound and nucleotide-free structures of a nitrogenase protein complex between the Leu 127 Delta-Fe-protein and the MoFe-protein. Chiu H; Peters JW; Lanzilotta WN; Ryle MJ; Seefeldt LC; Howard JB; Rees DC Biochemistry; 2001 Jan; 40(3):641-50. PubMed ID: 11170380 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic interpretation of the dilution effect for Azotobacter vinelandii and Clostridium pasteurianum nitrogenase catalysis. Johnson JL; Nyborg AC; Wilson PE; Tolley AM; Nordmeyer FR; Watt GD Biochim Biophys Acta; 2000 Nov; 1543(1):36-46. PubMed ID: 11087939 [TBL] [Abstract][Full Text] [Related]
11. Binding of MgATP to the nitrogenase proteins from Azotobacter vinelandii. Cordewener J; Haaker H; Veeger C Eur J Biochem; 1983 Apr; 132(1):47-54. PubMed ID: 6601579 [TBL] [Abstract][Full Text] [Related]
12. Iron-sulfur clusters in the molybdenum-iron protein component of nitrogenase. Electron paramagnetic resonance of the carbon monoxide inhibited state. Davis LC; Henzl MT; Burris RH; Orme-Johnson WH Biochemistry; 1979 Oct; 18(22):4860-9. PubMed ID: 228701 [TBL] [Abstract][Full Text] [Related]
13. Interactions of heterologous nitrogenase components that generate catalytically inactive complexes. Emerich DW; Burris RH Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4369-73. PubMed ID: 1069989 [TBL] [Abstract][Full Text] [Related]
14. Properties of the MgATP and MgADP binding sites on the Fe protein of nitrogenase from Azotobacter vinelandii. Cordewener J; Haaker H; Van Ewijk P; Veeger C Eur J Biochem; 1985 May; 148(3):499-508. PubMed ID: 3873334 [TBL] [Abstract][Full Text] [Related]
15. Long-range interactions between the Fe protein binding sites of the MoFe protein of nitrogenase. Maritano S; Fairhurst SA; Eady RR J Biol Inorg Chem; 2001 Jun; 6(5-6):590-600. PubMed ID: 11472022 [TBL] [Abstract][Full Text] [Related]
16. Pre-steady-state MgATP-dependent proton production and electron transfer by nitrogenase from Azotobacter vinelandii. Duyvis MG; Wassink H; Haaker H Eur J Biochem; 1994 Nov; 225(3):881-90. PubMed ID: 7957225 [TBL] [Abstract][Full Text] [Related]
17. Steady-state kinetic studies of dithionite utilization, component protein interaction, and the formation of an oxidized iron protein intermediate during Azotobacter vinelandii nitrogenase catalysis. Johnson JL; Tolley AM; Erickson JA; Watt GD Biochemistry; 1996 Sep; 35(35):11336-42. PubMed ID: 8784188 [TBL] [Abstract][Full Text] [Related]
18. Effect of salts on Azotobacter vinelandii nitrogenase activities. Inhibition of iron chelation and substrate reduction. Deits TL; Howard JB J Biol Chem; 1990 Mar; 265(7):3859-67. PubMed ID: 2303482 [TBL] [Abstract][Full Text] [Related]
19. Nucleotide hydrolysis and protein conformational changes in Azotobacter vinelandii nitrogenase iron protein: defining the function of aspartate 129. Lanzilotta WN; Ryle MJ; Seefeldt LC Biochemistry; 1995 Aug; 34(34):10713-23. PubMed ID: 7662655 [TBL] [Abstract][Full Text] [Related]
20. Kinetic studies on electron transfer and interaction between nitrogenase components from Azotobacter vinelandii. Hageman RV; Burris RH Biochemistry; 1978 Oct; 17(20):4117-24. PubMed ID: 708696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]