These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 728444)
21. Identification of a nitrogenase protein-protein interaction site defined by residues 59 through 67 within the Azotobacter vinelandii Fe protein. Peters JW; Fisher K; Dean DR J Biol Chem; 1994 Nov; 269(45):28076-83. PubMed ID: 7961744 [TBL] [Abstract][Full Text] [Related]
22. A hybrid Azotobacter vinelandii-Clostridium pasteurianum nitrogenase iron protein that has in vivo and in vitro catalytic activity. Jacobson MR; Cantwell JS; Dean DR J Biol Chem; 1990 Nov; 265(32):19429-33. PubMed ID: 2246234 [TBL] [Abstract][Full Text] [Related]
23. Molybdenum nitrogenase of Azotobacter chroococcum. Tight binding of MgADP to the MoFe protein. Miller RW; Eady RR Biochem J; 1989 Nov; 263(3):725-9. PubMed ID: 2597127 [TBL] [Abstract][Full Text] [Related]
24. Mapping the site(s) of MgATP and MgADP interaction with the nitrogenase of Azotobacter vinelandii. Lysine 15 of the iron protein plays a major role in MgATP interaction. Seefeldt LC; Morgan TV; Dean DR; Mortenson LE J Biol Chem; 1992 Apr; 267(10):6680-8. PubMed ID: 1313018 [TBL] [Abstract][Full Text] [Related]
25. Hydrolysis of nucleoside triphosphates other than ATP by nitrogenase. Ryle MJ; Seefeldt LC J Biol Chem; 2000 Mar; 275(9):6214-9. PubMed ID: 10692415 [TBL] [Abstract][Full Text] [Related]
26. Evidence for electron transfer-dependent formation of a nitrogenase iron protein-molybdenum-iron protein tight complex. The role of aspartate 39. Lanzilotta WN; Fisher K; Seefeldt LC J Biol Chem; 1997 Feb; 272(7):4157-65. PubMed ID: 9020128 [TBL] [Abstract][Full Text] [Related]
27. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase. Dilworth MJ; Fisher K; Kim CH; Newton WE Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864 [TBL] [Abstract][Full Text] [Related]
28. Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein. Zhang LM; Morrison CN; Kaiser JT; Rees DC Acta Crystallogr D Biol Crystallogr; 2015 Feb; 71(Pt 2):274-82. PubMed ID: 25664737 [TBL] [Abstract][Full Text] [Related]
29. Nitrogenase X: Mössbauer and EPR studies on reversibly oxidized MoFe protein from Azotobacter vinelandii OP. Nature of the iron centers. Zimmermann R; Münck E; Brill WJ; Shah VK; Henzl MT; Rawlings J; Orme-Johnson WH Biochim Biophys Acta; 1978 Dec; 537(2):185-207. PubMed ID: 215215 [TBL] [Abstract][Full Text] [Related]
30. Conformational variability in structures of the nitrogenase iron proteins from Azotobacter vinelandii and Clostridium pasteurianum. Schlessman JL; Woo D; Joshua-Tor L; Howard JB; Rees DC J Mol Biol; 1998 Jul; 280(4):669-85. PubMed ID: 9677296 [TBL] [Abstract][Full Text] [Related]
31. Kinetics of MgATP-dependent iron chelation from the Fe-protein of the Azotobacter vinelandii nitrogenase complex. Evidence for two states. Deits TL; Howard JB J Biol Chem; 1989 Apr; 264(12):6619-28. PubMed ID: 2785107 [TBL] [Abstract][Full Text] [Related]
32. Iron-molybdenum cofactor insertion into the Apo-MoFe protein of nitrogenase involves the iron protein-MgATP complex. Robinson AC; Chun TW; Li JG; Burgess BK J Biol Chem; 1989 Jun; 264(17):10088-95. PubMed ID: 2785995 [TBL] [Abstract][Full Text] [Related]
33. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation. Lanzilotta WN; Seefeldt LC Biochemistry; 1997 Oct; 36(42):12976-83. PubMed ID: 9335558 [TBL] [Abstract][Full Text] [Related]
34. X-ray crystal structure of the nitrogenase molybdenum-iron protein from Clostridium pasteurianum at 3.0-A resolution. Kim J; Woo D; Rees DC Biochemistry; 1993 Jul; 32(28):7104-15. PubMed ID: 8393705 [TBL] [Abstract][Full Text] [Related]
35. Cross-linking of nitrogenase components. Structure and activity of the covalent complex. Willing AH; Georgiadis MM; Rees DC; Howard JB J Biol Chem; 1989 May; 264(15):8499-503. PubMed ID: 2722786 [TBL] [Abstract][Full Text] [Related]
36. Electron transfer in nitrogenase analyzed by Marcus theory: evidence for gating by MgATP. Lanzilotta WN; Parker VD; Seefeldt LC Biochemistry; 1998 Jan; 37(1):399-407. PubMed ID: 9425061 [TBL] [Abstract][Full Text] [Related]
38. Pre-steady-state kinetics of nitrogenase from Azotobacter vinelandii. Evidence for an ATP-induced conformational change of the nitrogenase complex as part of the reaction mechanism. Duyvis MG; Wassink H; Haaker H J Biol Chem; 1996 Nov; 271(47):29632-6. PubMed ID: 8939894 [TBL] [Abstract][Full Text] [Related]
39. On the formation of an oxygen-tolerant three-component nitrogenase complex from Azotobacter vinelandii. Scherings G; Haaker H; Wassink H; Veeger C Eur J Biochem; 1983 Oct; 135(3):591-9. PubMed ID: 6578037 [TBL] [Abstract][Full Text] [Related]
40. A reinvestigation of the pre-steady-state ATPase activity of the nitrogenase from Azotobacter vinelandii. Mensink RE; Wassink H; Haaker H Eur J Biochem; 1992 Sep; 208(2):289-94. PubMed ID: 1325902 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]