BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 7284550)

  • 1. A hydrodynamic theory of bilayer membrane formation.
    Dimitrov DS
    Biophys J; 1981 Oct; 36(1):21-5. PubMed ID: 7284550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tensions and free energies of formation of "solventless" lipid bilayers. Measurement of high contact angles.
    Needham D; Haydon DA
    Biophys J; 1983 Mar; 41(3):251-7. PubMed ID: 6838967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable cupola-shaped bilayer lipid membranes with mobile Plateau-Gibbs border: expansion-shrinkage of membrane due to thermal transitions.
    Antonov VF; Shevchenko EV; Smirnova EYu ; Yakovenko EV; Frolov AV
    Chem Phys Lipids; 1992 May; 61(3):219-24. PubMed ID: 1525961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Kinetics of bilayer lipid membrane formation].
    Malev VV; Matveeva AI
    Biofizika; 1983; 28(1):50-5. PubMed ID: 6830902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bilayer lipid membrane permeation and rupture due to hole formation.
    Kashchiev D; Exerowa D
    Biochim Biophys Acta; 1983 Jul; 732(1):133-45. PubMed ID: 6871186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mean-field model of the alkane-saturated lipid bilayer above its phase transition. II. Results and comparison with experiment.
    Gruen DW; Haydon DA
    Biophys J; 1981 Feb; 33(2):167-87. PubMed ID: 7225504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detachment of agglutinin-bonded red blood cells. III. Mechanical analysis for large contact areas.
    Berk D; Evans E
    Biophys J; 1991 Apr; 59(4):861-72. PubMed ID: 2065190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photon correlation spectroscopy of bilayer lipid membranes.
    Crilly JF; Earnshaw JC
    Biophys J; 1983 Feb; 41(2):197-210. PubMed ID: 6838962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical equilibrium of thick, hollow, liquid membrane cylinders.
    Waugh RE; Hochmuth RM
    Biophys J; 1987 Sep; 52(3):391-400. PubMed ID: 3651558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Evaluation of bilayer distortion parameters in the vicintiy of membrane proteins on the basis of an elastic model].
    Pasechnik VI
    Biofizika; 1980; 25(4):643-7. PubMed ID: 7417543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Estimation of the width of the transition zone from bilayer to solid phase].
    MedvinskiÄ­ AB; BerestovskiÄ­ GN
    Biofizika; 1980; 25(6):1045-7. PubMed ID: 7448216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct in situ measurement of specific capacitance, monolayer tension, and bilayer tension in a droplet interface bilayer.
    Taylor GJ; Venkatesan GA; Collier CP; Sarles SA
    Soft Matter; 2015 Oct; 11(38):7592-605. PubMed ID: 26289743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detailed mechanics of membrane-membrane adhesion and separation. I. Continuum of molecular cross-bridges.
    Evans EA
    Biophys J; 1985 Jul; 48(1):175-83. PubMed ID: 4016207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the membrane cortex in neutrophil deformation in small pipets.
    Zhelev DV; Needham D; Hochmuth RM
    Biophys J; 1994 Aug; 67(2):696-705. PubMed ID: 7948682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric field-induced breakdown of lipid bilayers and cell membranes: a thin viscoelastic film model.
    Dimitrov DS
    J Membr Biol; 1984; 78(1):53-60. PubMed ID: 6708093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Electrostriction of plane lipid membranes and elasticity moduli].
    BerestovskiÄ­ GN
    Biofizika; 1981; 26(3):474-80. PubMed ID: 7260159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disjoining pressure of thin films stabilized by nonionic surfactants.
    Danov KD; Ivanov IB; Ananthapadmanabhan KP; Lips A
    Adv Colloid Interface Sci; 2006 Dec; 128-130():185-215. PubMed ID: 17207762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the effect of bilayer membrane structures and fluctuation amplitudes on SANS/SAXS profile for short membrane wavelength.
    Lee V; Hawa T
    J Chem Phys; 2013 Sep; 139(12):124905. PubMed ID: 24089802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detachment of agglutinin-bonded red blood cells. II. Mechanical energies to separate large contact areas.
    Evans E; Berk D; Leung A; Mohandas N
    Biophys J; 1991 Apr; 59(4):849-60. PubMed ID: 2065189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.