These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 7284568)

  • 1. Ionic strength effects on macroion diffusion and excess light-scattering intensities of short DNA rods.
    Fulmer AW; Benbasat JA; Bloomfield VA
    Biopolymers; 1981 Jun; 20(6):1147-59. PubMed ID: 7284568
    [No Abstract]   [Full Text] [Related]  

  • 2. Quasielastic light-scattering studies on dinucleosomal-sized DNA: ionic-strength dependence.
    Schmitz KS; Lu M
    Biopolymers; 1984 Apr; 23(4):797-808. PubMed ID: 6713078
    [No Abstract]   [Full Text] [Related]  

  • 3. Quasielastic light scattering: effect of ionic strength on the internal dynamics of DNA.
    Caloin M; Wilhelm B; Daune M
    Biopolymers; 1977 Oct; 16(10):2091-2104. PubMed ID: 911993
    [No Abstract]   [Full Text] [Related]  

  • 4. Dinucleosomes show compaction by ionic strength, consistent with bending of linker DNA.
    Butler PJ; Thomas JO
    J Mol Biol; 1998 Aug; 281(3):401-7. PubMed ID: 9698556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of nucleosome unfolding at low ionic strength.
    Dieterich AE; Cantor CR
    Biopolymers; 1981 Jan; 20(1):111-27. PubMed ID: 7470585
    [No Abstract]   [Full Text] [Related]  

  • 6. Quasielastic light scattering by biopolymers. III. Effect of ionic strength on internal dynamics of DNA.
    Schmitz KS
    Biopolymers; 1979 Feb; 18(2):479-84. PubMed ID: 435603
    [No Abstract]   [Full Text] [Related]  

  • 7. An abnormal resonance light scattering arising from ionic-liquid/DNA/ethidium interactions.
    Cheng DH; Chen XW; Wang JH; Fang ZL
    Chemistry; 2007; 13(17):4833-9. PubMed ID: 17366513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone-induced conformational changes in DNA as probed by quasi-elastic light scattering.
    Wun KL; Prins W
    Biopolymers; 1975 Jan; 14(1):111-7. PubMed ID: 1236751
    [No Abstract]   [Full Text] [Related]  

  • 9. Micro-determination of nucleic acids with a simple probe manganese chloride based on the fine enhanced resonance light scattering.
    Chen Z; Liao X; Zhu L; Liu J; Han Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Oct; 68(2):263-8. PubMed ID: 17327143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of sodium glycodeoxycholate micellar aggregates from small-angle X-ray scattering and light-scattering techniques.
    Cozzolino S; Galantini L; Giglio E; Hoffmann S; Leggio C; Pavel NV
    J Phys Chem B; 2006 Jun; 110(25):12351-9. PubMed ID: 16800558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong impact of ionic strength on the kinetics of fibrilar aggregation of bovine beta-lactoglobulin.
    Arnaudov LN; de Vries R
    Biomacromolecules; 2006 Dec; 7(12):3490-8. PubMed ID: 17154479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasielastic light scattering by biopolymers. Conformation of chromatin multimers.
    Shaw BR; Schmitz KS
    Biochem Biophys Res Commun; 1976 Nov; 73(2):224-32. PubMed ID: 999708
    [No Abstract]   [Full Text] [Related]  

  • 13. Dynamics of proteins: light scattering study of dilute and dense colloidal suspensions of eye lens homogenates.
    Giannopoulou A; Aletras AJ; Pharmakakis N; Papatheodorou GN; Yannopoulos SN
    J Chem Phys; 2007 Nov; 127(20):205101. PubMed ID: 18052454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of nucleic acids with crystal violet by a resonance light-scattering technique.
    Zhang W; Xu H; Wu S; Chen X; Hu Z
    Analyst; 2001 Apr; 126(4):513-7. PubMed ID: 11340990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light scattering measurements supporting helical structures for chromatin in solution.
    Campbell AM; Cotter RI; Pardon JF
    Nucleic Acids Res; 1978 May; 5(5):1571-80. PubMed ID: 662693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Centrifugal field relaxation and ionic strength effects on calf thymus DNA gels.
    Richard AJ
    Biopolymers; 1983 Mar; 22(3):935-43. PubMed ID: 6850055
    [No Abstract]   [Full Text] [Related]  

  • 17. [Dynamics of coiled DNA by the light scattering method].
    Ivanova MA; Lomakin AV; Noskin VA
    Mol Biol (Mosk); 1983; 17(3):653-66. PubMed ID: 6877236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasielastic light scattering by biopolymers. VI. Diffusion of mononucleosomes and oligonucleosomes in the presence of static and sinusoidal electric fields.
    Schmitz KS
    Biopolymers; 1982 Jul; 21(7):1383-98. PubMed ID: 7115895
    [No Abstract]   [Full Text] [Related]  

  • 19. Thermodynamics and equilibrium sedimentation analysis of the close approach of DNA molecules and a molecular ordering transition.
    Brian AA; Frisch HL; Lerman LS
    Biopolymers; 1981 Jun; 20(6):1305-28. PubMed ID: 7284570
    [No Abstract]   [Full Text] [Related]  

  • 20. Study of the interaction of hexa-amine cobalt (III) ion with DNA by a resonance light scattering technique and its analytical application.
    Li ZP; Li YK; Wang YC
    Luminescence; 2005; 20(4-5):282-6. PubMed ID: 16134208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.