BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 7286338)

  • 1. [Role of changes in blood volume and linear velocity in the formation of pulsatile electrical impedance oscillations].
    Mazhbich BI; Matveev PV; Roĭfman MD
    Fiziol Zh SSSR Im I M Sechenova; 1981 Aug; 67(8):1237-44. PubMed ID: 7286338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Role of fluctuations in the blood filling the vascular bed and in the linear blood flow velocity in the genesis of pulsatile waves of electrical impedance in a part of the body].
    Petrash VV
    Fiziol Zh SSSR Im I M Sechenova; 1983 Dec; 69(12):1602-7. PubMed ID: 6662230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The electrical impedance of pulsatile blood flowing through rigid tubes: a theoretical investigation.
    Gaw RL; Cornish BH; Thomas BJ
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):721-7. PubMed ID: 18270009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Quantitative aortic flow and cardiac output volume determinations in rabbits using tetrapolar impedance plethysmography].
    Schäfer RO; Bruchovetzkij VI; Sutschkov VV
    Biomed Biochim Acta; 1983; 42(10):1287-97. PubMed ID: 6675670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contribution of vessel volume change and blood resistivity change to the electrical impedance pulse.
    Ravi Shankar TM; Webster JG; Shao SY
    IEEE Trans Biomed Eng; 1985 Mar; 32(3):192-8. PubMed ID: 3997176
    [No Abstract]   [Full Text] [Related]  

  • 6. Pressure-flow loops and instantaneous input impedance in the thoracic aorta: another way to assess the effect of aortic bypass graft implantation on myocardial, brain, and subdiaphragmatic perfusion.
    Mekkaoui C; Rolland PH; Friggi A; Rasigni M; Mesana TG
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):699-710. PubMed ID: 12658214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The contribution of blood-flow-induced conductivity changes to measured impedance.
    Wtorek J; Poliński A
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):41-9. PubMed ID: 15651563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of altered impedance in the pathophysiology of normal pressure hydrocephalus, Alzheimer's disease and syringomyelia.
    Bateman GA
    Med Hypotheses; 2004; 63(6):980-5. PubMed ID: 15504565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of an impedance device to a displacement plethysmograph for study of finger blood flow.
    Montgomery LD
    Aviat Space Environ Med; 1976 Jan; 47(1):33-8. PubMed ID: 1247433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the effect of vessel curvature on Doppler measurements in steady flow.
    Balbis S; Guiot C; Roatta S; Arina R; Todros T
    Ultrasound Med Biol; 2004 May; 30(5):639-45. PubMed ID: 15183230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow dynamics in anatomical models of abdominal aortic aneurysms: computational analysis of pulsatile flow.
    Finol EA; Amon CH
    Acta Cient Venez; 2003; 54(1):43-9. PubMed ID: 14515766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2006; 39(5):818-32. PubMed ID: 16488221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An impedance device for study of multisegment hemodynamic changes during orthostatic stress.
    Montgomery LD; Hanish HM; Marker RA
    Aviat Space Environ Med; 1989 Nov; 60(11):1116-22. PubMed ID: 2818406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Causes for rheographic signal changes].
    Gal'perin IuM; Raeva II
    Fiziol Zh SSSR Im I M Sechenova; 1980 Oct; 66(10):1506-15. PubMed ID: 7439441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of electrical impedance to monitor changes in blood flow in man [proceedings].
    Arenson HM; Payne JP; Smith TG
    J Physiol; 1978 Aug; 281():10P-11P. PubMed ID: 702357
    [No Abstract]   [Full Text] [Related]  

  • 16. Imaging of thoracic blood volume changes during the heart cycle with electrical impedance using a linear spot-electrode array.
    Hoetink AE; Faes TJ; Marcus JT; Kerkkamp HJ; Heethaar RM
    IEEE Trans Med Imaging; 2002 Jun; 21(6):653-61. PubMed ID: 12166862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The effects of pulsatile flow upon the impedance of blood (author's transl)].
    Sakamoto K; Kanai H
    Iyodenshi To Seitai Kogaku; 1979 Apr; 17(2):127-33. PubMed ID: 491295
    [No Abstract]   [Full Text] [Related]  

  • 18. A model study of stroke volume values calculated from impedance and their relation to the waveform of blood flow.
    Ito H; Yamakoshi KI; Togawa T
    IEEE Trans Biomed Eng; 1977 Sep; 24(5):489-91. PubMed ID: 892848
    [No Abstract]   [Full Text] [Related]  

  • 19. [Experimental evaluation of impedance cardiography in swine. II. Morphological evaluation of the cardiographic curve].
    Gozzetti G; Plicchi G; Arpesella A; Martinelli G; Giannoni A
    Boll Soc Ital Biol Sper; 1975 Jan; 51(1-2):39-42. PubMed ID: 124577
    [No Abstract]   [Full Text] [Related]  

  • 20. [The numerical simulation of pulsatile flow in a tapered blood vessel].
    Qiu L; Fan Y; Dong B; Yuan Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):558-61. PubMed ID: 15357431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.