These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7287229)

  • 1. A genetic approach to the role of energy metabolism in the growth of tumor cells: tumorigenicity of fibroblast mutants deficient either in glycolysis or in respiration.
    Franchi A; Silvestre P; Pouysségur J
    Int J Cancer; 1981 Jun; 27(6):819-27. PubMed ID: 7287229
    [No Abstract]   [Full Text] [Related]  

  • 2. Emergence of hamster fibroblast tumors in nude mice--evidence for in vivo selection leading to loss of growth factor requirement.
    Pérez-Rodriguez R; Chambard JC; Van Obberghen-Schilling E; Franchi A; Pouysségur J
    J Cell Physiol; 1981 Dec; 109(3):387-96. PubMed ID: 7320057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multistep origin of tumor-forming ability in Chinese hamster embryo fibroblast cells.
    Smith BL; Sager R
    Cancer Res; 1982 Feb; 42(2):389-96. PubMed ID: 6799186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of a Chinese hamster fibroblast mutant defective in hexose transport and aerobic glycolysis: its use to dissect the malignant phenotype.
    Pouysségur J; Franchi A; Salomon JC; Silvestre P
    Proc Natl Acad Sci U S A; 1980 May; 77(5):2698-701. PubMed ID: 6930659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumorigenicity of CHO glycosylation mutants in the nude mouse.
    Stanley P
    Rev Fr Transfus Immunohematol; 1986 Sep; 29(4):223-32. PubMed ID: 3544148
    [No Abstract]   [Full Text] [Related]  

  • 6. Hyperthermia-induced cell death, thermotolerance, and heat shock proteins in normal, respiration-deficient, and glycolysis-deficient Chinese hamster cells.
    Landry J; Samson S; Chrétien P
    Cancer Res; 1986 Jan; 46(1):324-7. PubMed ID: 3940198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic analysis of tumorigenesis: X. Chromosome studies of transformed mutants and tumor-derived CHEF/18 cells.
    Kitchin RM; Gadi IK; Smith BL; Sager R
    Somatic Cell Genet; 1982 Sep; 8(5):677-89. PubMed ID: 7135168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo pH in metabolic-defective Ras-transformed fibroblast tumors: key role of the monocarboxylate transporter, MCT4, for inducing an alkaline intracellular pH.
    Chiche J; Le Fur Y; Vilmen C; Frassineti F; Daniel L; Halestrap AP; Cozzone PJ; Pouysségur J; Lutz NW
    Int J Cancer; 2012 Apr; 130(7):1511-20. PubMed ID: 21484790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential tumorigenicity of growth factor-dependent versus -independent CCL39 lung fibroblast lines in nude mice.
    Renwick DE; Franchi AJ; Pouysségur JM; Lagarde AE
    J Natl Cancer Inst; 1986 Jul; 77(1):105-14. PubMed ID: 3459908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell mutants as a tool to study malignant transformation of fibroblasts.
    Pouysségur J; Franchi A; Silvestre P
    Prog Clin Biol Res; 1980; 41():931-44. PubMed ID: 7192865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that hamster fibroblasts tumors emerge in nude mice through the process of two in vivo selections leading to growth factor "relaxation" and to immune resistance.
    Pérez-Rodriguez R; Franchi A; Deys BF; Pouysségur J
    Int J Cancer; 1982 Mar; 29(3):309-14. PubMed ID: 7068279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lonidamine, a selective inhibitor of aerobic glycolysis of murine tumor cells.
    Floridi A; Paggi MG; Marcante ML; Silvestrini B; Caputo A; De Martino C
    J Natl Cancer Inst; 1981 Mar; 66(3):497-9. PubMed ID: 6937706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic analysis of transformed and malignant phenotypes in somatic cell hybrids between tumorigenic Chinese hamster cells and diploid mouse fibroblasts.
    Schäfer R; Doehmer J; Drüge PM; Rademacher I; Willecke K
    Cancer Res; 1981 Mar; 41(3):1214-21. PubMed ID: 7459862
    [No Abstract]   [Full Text] [Related]  

  • 14. Decreased tumorigenicity correlates with expression of altered cell surface carbohydrates in Lec9 CHO cells.
    Ripka J; Shin S; Stanley P
    Mol Cell Biol; 1986 Apr; 6(4):1268-75. PubMed ID: 3785164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stepwise neoplastic transformation of a telomerase immortalized fibroblast cell line.
    Zongaro S; de Stanchina E; Colombo T; D'Incalci M; Giulotto E; Mondello C
    Cancer Res; 2005 Dec; 65(24):11411-8. PubMed ID: 16357149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of energy in cellular responses to heat.
    Calderwood SK
    Symp Soc Exp Biol; 1987; 41():213-33. PubMed ID: 3503380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of tumorigenicity in somatic cell hybrids. II. Human chromosomes implicated as suppressors of tumorigenicity in hybrids with Chinese hamster ovary cells.
    Klinger HP; Shows TB
    J Natl Cancer Inst; 1983 Sep; 71(3):559-69. PubMed ID: 6577230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycolysis, respiration, and anomalous gene expression in experimental hepatomas: G.H.A. Clowes memorial lecture.
    Weinhouse S
    Cancer Res; 1972 Oct; 32(10):2007-16. PubMed ID: 4343003
    [No Abstract]   [Full Text] [Related]  

  • 19. Mitochondrial chloramphenicol-resistant mutants can have deficiencies in energy metabolism.
    Howell N; Nalty MS
    Somat Cell Mol Genet; 1988 Mar; 14(2):185-93. PubMed ID: 3162337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of sodium bicarbonate on cell metabolism. 4. Respiration and glycolysis of tumor cells].
    Iijima N; Yamamoto T; Miyasaki S; Matsuzawa A; So S
    Igaku To Seibutsugaku; 1967 Sep; 75(3):86-9. PubMed ID: 5626921
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.