BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7287345)

  • 1. Regional effects of sodium aspartate and sodium glutamate on protein synthesis in the retina.
    Anderson RE; Hollyfield JG; Verner GE
    Invest Ophthalmol Vis Sci; 1981 Oct; 21(4):554-62. PubMed ID: 7287345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinal protein synthesis in relationship to environmental lighting.
    Hollyfield JG; Anderson RE
    Invest Ophthalmol Vis Sci; 1982 Nov; 23(5):631-9. PubMed ID: 6890049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preferential uptake and metabolism of docosahexaenoic acid in membrane phospholipids from rod and cone photoreceptor cells of human and monkey retinas.
    Rodriguez de Turco EB; Gordon WC; Peyman GA; Bazan NG
    J Neurosci Res; 1990 Dec; 27(4):522-32. PubMed ID: 2150417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of the conditions of gyrate atrophy in vitro suppresses retinal protein synthesis.
    Hollyfield JG
    Trans Ophthalmol Soc U K (1962); 1983; 103 ( Pt 4)():385-90. PubMed ID: 6589856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rod photoreceptors in the human retina synthesize and secrete interstitial retinol-binding protein.
    Hollyfield JG; Fliesler SJ; Rayborn ME; Bridges CD
    Prog Clin Biol Res; 1985; 190():141-9. PubMed ID: 4048219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and secretion of interstitial retinol-binding protein by the human retina.
    Hollyfield JG; Fliesler SJ; Rayborn ME; Fong SL; Landers RA; Bridges CD
    Invest Ophthalmol Vis Sci; 1985 Jan; 26(1):58-67. PubMed ID: 4038498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake of aspartic and glutamic acid by photoreceptors in goldfish retina.
    Marc RE; Lam DM
    Proc Natl Acad Sci U S A; 1981 Nov; 78(11):7185-9. PubMed ID: 6118867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interphotoreceptor retinoid-binding protein (IRBP) promotes the release of all-trans retinol from the isolated retina following rhodopsin bleaching illumination.
    Qtaishat NM; Wiggert B; Pepperberg DR
    Exp Eye Res; 2005 Oct; 81(4):455-63. PubMed ID: 15935345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initiating ocular proteomics for cataloging bovine retinal proteins: microanalytical techniques permit the identification of proteins derived from a novel photoreceptor preparation.
    Nishizawa Y; Komori N; Usukura J; Jackson KW; Tobin SL; Matsumoto H
    Exp Eye Res; 1999 Aug; 69(2):195-212. PubMed ID: 10433856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decrease of opsin content in the developing rat photoreceptor cells by systemic administration of L-glutamate.
    Kanno C; Ishiguro S; Shiono T; Kikuchi M; Tamai M
    Cell Struct Funct; 1991 Oct; 16(5):399-403. PubMed ID: 1837498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high dietary intake of sodium glutamate as flavoring (ajinomoto) causes gross changes in retinal morphology and function.
    Ohguro H; Katsushima H; Maruyama I; Maeda T; Yanagihashi S; Metoki T; Nakazawa M
    Exp Eye Res; 2002 Sep; 75(3):307-15. PubMed ID: 12384093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake and localization of 3H-2 deoxy-D-glucose by retinal photoreceptors.
    Witkovsky P; Yang CY
    J Comp Neurol; 1982 Jan; 204(2):105-16. PubMed ID: 6976980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of glial metabolism to neuronal damage caused by partial inhibition of energy metabolism in retina.
    Zeevalk GD; Nicklas WJ
    Exp Eye Res; 1997 Sep; 65(3):397-405. PubMed ID: 9299176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane morphogenesis in retinal rod outer segments: inhibition by tunicamycin.
    Fliesler SJ; Rayborn ME; Hollyfield JG
    J Cell Biol; 1985 Feb; 100(2):574-87. PubMed ID: 3155750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alteration of retinal choline metabolism in an experimental model for photoreceptor cell degeneration.
    Pu GA; Anderson RE
    Invest Ophthalmol Vis Sci; 1983 Mar; 24(3):288-93. PubMed ID: 6832905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connexin 36 in photoreceptor cells: studies on transgenic rod-less and cone-less mouse retinas.
    Dang L; Pulukuri S; Mears AJ; Swaroop A; Reese BE; Sitaramayya A
    Mol Vis; 2004 May; 10():323-7. PubMed ID: 15152186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamate transport by retinal Muller cells in glutamate/aspartate transporter-knockout mice.
    Sarthy VP; Pignataro L; Pannicke T; Weick M; Reichenbach A; Harada T; Tanaka K; Marc R
    Glia; 2005 Jan; 49(2):184-96. PubMed ID: 15390100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postmortem metabolic capacity of photoreceptor cells in human and rat retinas.
    Schmidt SY; Berson EL
    Invest Ophthalmol Vis Sci; 1980 Nov; 19(11):1274-80. PubMed ID: 7429764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and maintenance of outer segments by isolated chick embryo photoreceptor cells in culture.
    Saga T; Scheurer D; Adler R
    Invest Ophthalmol Vis Sci; 1996 Mar; 37(4):561-73. PubMed ID: 8595956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does GDNF exert its neuroprotective effects on photoreceptors in the rd1 retina through the glial glutamate transporter GLAST?
    Delyfer MN; Simonutti M; Neveux N; LĂ©veillard T; Sahel JA
    Mol Vis; 2005 Sep; 11():677-87. PubMed ID: 16163265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.