These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 7287351)

  • 1. Analysis of microdissected cataractous human lenses.
    Horwitz J; Neuhaus R; Dockstader J
    Invest Ophthalmol Vis Sci; 1981 Oct; 21(4):616-9. PubMed ID: 7287351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitation of high molecular weight protein aggregates in opaque and transparent parts from the same human cataractous lens.
    Kodama T; Wolfe J; Chylack L; Smith J; Takemoto L
    Jpn J Ophthalmol; 1989; 33(1):114-9. PubMed ID: 2733253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covalent change in alpha crystallin in opaque and transparent sections from the same human cataractous lens.
    Kodama T; Kodama T; Horwitz J; Takemoto L
    Jpn J Ophthalmol; 1990; 34(1):44-52. PubMed ID: 2362373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical analysis of microdissected sections from the normal and cataractous human lens.
    Takemoto LJ; Hansen JS; Horwitz J
    Curr Eye Res; 1982-1983; 2(7):443-50. PubMed ID: 7182105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of low molecular weight fractions in human senile cataractous lens.
    Takehana M; Takemoto LJ; Iwata S
    Jpn J Ophthalmol; 1983; 27(4):585-91. PubMed ID: 6668751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dehydroalanine crosslinks in human lens.
    Linetsky M; Hill JM; LeGrand RD; Hu F
    Exp Eye Res; 2004 Oct; 79(4):499-512. PubMed ID: 15381034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme activities and crystallin profiles of clear and cataractous lenses of the RCS rat.
    Dovrat A; Ding LL; Horwitz J
    Exp Eye Res; 1993 Aug; 57(2):217-24. PubMed ID: 8405188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A structural study of crystallins in the normal and cataractous crystalline lens by x-ray diffraction].
    Krivandin AV; L'vov IuM; Ostrovskiĭ MA; Fedorovich IB; Feĭgin LA
    Oftalmol Zh; 1989; (6):365-6. PubMed ID: 2622606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitation of membrane-associated crystallins from aging and cataractous human lenses.
    Takehana M; Takemoto L
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):780-4. PubMed ID: 3570688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Changes in water-soluble, urea-soluble and membrane intrinsic proteins in human senile cataract].
    Zhao HR; Hu SQ; Ren XH
    Zhonghua Yan Ke Za Zhi; 1994 May; 30(3):186-8. PubMed ID: 7842996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatofocusing for separation of human cataractous lens low molecular weight proteins.
    Kabasawa I; Watanabe M; Kimura M
    Jpn J Ophthalmol; 1983; 27(4):592-7. PubMed ID: 6668752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of microdissected sections from the human cataractous lens by antisera to synthetic peptides.
    Takemoto L; Kodama T; Wolfe J; Chylack L
    Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1210-3. PubMed ID: 3596997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper.
    Padgaonkar VA; Leverenz VR; Fowler KE; Reddy VN; Giblin FJ
    Exp Eye Res; 2000 Oct; 71(4):371-83. PubMed ID: 10995558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational changes in soluble lens proteins during the development of senile nuclear cataract.
    McNamara MK; Augusteyn RC
    Curr Eye Res; 1984 Apr; 3(4):571-83. PubMed ID: 6713956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase.
    Molnár GA; Nemes V; Biró Z; Ludány A; Wagner Z; Wittmann I
    Free Radic Res; 2005 Dec; 39(12):1359-66. PubMed ID: 16298866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sedimentation field-flow fractionation: a method for studying particulates in cataractous lens.
    Caldwell KD; Compton BJ; Giddings JC; Olson RJ
    Invest Ophthalmol Vis Sci; 1984 Feb; 25(2):153-9. PubMed ID: 6698737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.