BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 7287585)

  • 21. Candicidin Isomer Production Is Essential for Biocontrol of Cucumber
    Yao X; Zhang Z; Huang J; Wei S; Sun X; Chen Y; Liu H; Li S
    Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33608297
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Competition and antibiosis in the biological control of potato scab.
    Neeno-Eckwall EC; Kinkel LL; Schottel JL
    Can J Microbiol; 2001 Apr; 47(4):332-40. PubMed ID: 11358173
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PCR-DGGE Analysis Proves the Suppression of
    Elsharkawy MM; Kuno S; Hyakumachi M; Mostafa YS; Alamri SA; Alrumman SA
    J Fungi (Basel); 2022 Jan; 8(2):. PubMed ID: 35205888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioactive Streptomycetes from Isolation to Applications: A Tasmanian Potato Farm Example.
    Ashfield-Crook NR; Woodward Z; Soust M; Kurtböke Dİ
    Methods Mol Biol; 2021; 2232():219-249. PubMed ID: 33161551
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antifungal characteristics of a fluorescent Pseudomonas strain involved in the biological control of Rhizoctonia solani.
    Pal KK; Tilak KV; Saxena AK; Dey R; Singh CS
    Microbiol Res; 2000 Sep; 155(3):233-42. PubMed ID: 11061193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Screening strains for Trichoderma spp. for strong antagonism against ginseng root pathogens and study on their biological characters].
    Zhao AN; Ding WL; Zhu DL
    Zhongguo Zhong Yao Za Zhi; 2006 Oct; 31(20):1671-4. PubMed ID: 17225530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Host-Pathogen Interactions: XII. Response of Suspension-cultured Soybean Cells to the Elicitor Isolated from Phytophthora megasperma var. sojae, a Fungal Pathogen of Soybeans.
    Ebel J; Ayers AR; Albersheim P
    Plant Physiol; 1976 May; 57(5):775-9. PubMed ID: 16659568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensitivity of Rhizoctonia Isolates to Phenazine-1-Carboxylic Acid and Biological Control by Phenazine-Producing Pseudomonas spp.
    Jaaffar AKM; Parejko JA; Paulitz TC; Weller DM; Thomashow LS
    Phytopathology; 2017 Jun; 107(6):692-703. PubMed ID: 28383281
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of inoculum density and soil tillage on the development and severity of rhizoctonia root rot.
    Schroeder KL; Paulitz TC
    Phytopathology; 2008 Mar; 98(3):304-14. PubMed ID: 18944081
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Actinomyces pneumonicus var. altamicus var. nov., a producer of new altamycin antibiotics].
    Barashkova NP; Shenin IuD; Miasnikova LG
    Antibiotiki; 1976 Jun; 21(6):487-91. PubMed ID: 942187
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Formation of a streptothricin-group antibiotic by a Streptomyces glaucus 1136 culture].
    Preobrazhenskaia TP; Galatenko OA; Ol'khovatova OL; Malkina ND; Boĭkova IuV
    Antibiot Med Biotekhnol; 1986 May; 31(5):329-33. PubMed ID: 3014999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Soil suppressiveness to Rhizoctonia solani and microbial diversity.
    Bakker Y; Van Loon FM; Schneider JH
    Commun Agric Appl Biol Sci; 2005; 70(3):29-33. PubMed ID: 16637155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon Source-Dependent Effects of Anaerobic Soil Disinfestation on Soil Microbiome and Suppression of Rhizoctonia solani AG-5 and Pratylenchus penetrans.
    Hewavitharana SS; Mazzola M
    Phytopathology; 2016 Sep; 106(9):1015-28. PubMed ID: 27143411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phytophthora taxon niederhauserii, a New Root and Crown Rot Pathogen of Banksia spp. in Italy.
    Cacciola SO; Scibetta S; Martini P; Rizza C; Pane A
    Plant Dis; 2009 Nov; 93(11):1216. PubMed ID: 30754609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. First Report of Brown Rot and Wilt of Fennel Caused by Phytophthora megasperma in Italy.
    Cacciola SO; Pane A; Cooke DEL; Raudino F; Magnano di San Lio G
    Plant Dis; 2006 Jan; 90(1):110. PubMed ID: 30786490
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic network model guided engineering ethylmalonyl-CoA pathway to improve ascomycin production in Streptomyces hygroscopicus var. ascomyceticus.
    Wang J; Wang C; Song K; Wen J
    Microb Cell Fact; 2017 Oct; 16(1):169. PubMed ID: 28974216
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biocontrol efficacy of different isolates of Trichoderma against soil borne pathogen Rhizoctonia solani.
    Asad SA; Ali N; Hameed A; Khan SA; Ahmad R; Bilal M; Shahzad M; Tabassum A
    Pol J Microbiol; 2014; 63(1):95-103. PubMed ID: 25033669
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Sugar Beet Variety and Nonhost Plant on Rhizoctonia solani AG2-2IIIB Soil Inoculum Potential Measured in Soil DNA Extracts.
    Schulze S; Koch HJ; Märländer B; Varrelmann M
    Phytopathology; 2016 Sep; 106(9):1047-54. PubMed ID: 27143412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of carboxymethylcellulose on morphology and antibiotic production by Streptomyces hygroscopicus.
    Ilić SB; Konstantinović SS; Veljković VB; Savić DS; Lazić ML; Gojgić-Cvijović G
    Curr Microbiol; 2008 Jul; 57(1):8-11. PubMed ID: 18379844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro and in vivo antagonism of actinomycetes isolated from Moroccan rhizospherical soils against Sclerotium rolfsii: a causal agent of root rot on sugar beet (Beta vulgaris L.).
    Errakhi R; Lebrihi A; Barakate M
    J Appl Microbiol; 2009 Aug; 107(2):672-81. PubMed ID: 19302305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.