These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 7287938)

  • 1. Differentiation of an identified sensory neuron (SR) and associated structures (CTO) in grasshopper embryos.
    Heathcote RD
    J Comp Neurol; 1981 Oct; 202(1):1-18. PubMed ID: 7287938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural correlates of flight loss in a Mexican grasshopper, Barytettix psolus. I. Motor and sensory cells.
    Arbas EA
    J Comp Neurol; 1983 Jun; 216(4):369-80. PubMed ID: 6308070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a sensory afferent projection in the grasshopper embryo. I. Growth of peripheral pioneer axons within the central nervous system.
    Shankland M
    J Embryol Exp Morphol; 1981 Aug; 64():169-85. PubMed ID: 6171605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The locust wing hinge stretch receptors. I. Primary sensory neurones with enormous central arborizations.
    Altman JS; Tyrer NM
    J Comp Neurol; 1977 Apr; 172(3):409-30. PubMed ID: 838886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a sensory afferent projection in the grasshopper embryo. II. Growth and branching of peripheral sensory axons within the central nervous system.
    Shankland M
    J Embryol Exp Morphol; 1981 Aug; 64():187-209. PubMed ID: 6171606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chick wing innervation. I. Time course of innervation and early differentiation of the peripheral nerve pattern.
    Hollyday M
    J Comp Neurol; 1995 Jun; 357(2):242-53. PubMed ID: 7665727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embryonic development and evolutionary origin of the Orthopteran auditory organs.
    Meier T; Reichert H
    J Neurobiol; 1990 Jun; 21(4):592-610. PubMed ID: 2376731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embryonic development of a peripheral nervous system: nerve tract associated cells and pioneer neurons in the antenna of the grasshopper Schistocerca gregaria.
    Boyan GS; Williams JL
    Arthropod Struct Dev; 2007 Sep; 36(3):336-50. PubMed ID: 18089112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multiterminal stretch receptor, chordotonal organ, and hair plate at the wing-hinge of Manduca sexta: unravelling the mystery of the noctuid moth ear B cell.
    Yack JE
    J Comp Neurol; 1992 Oct; 324(4):500-8. PubMed ID: 1385494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chick wing innervation. II. Morphology of motor and sensory axons and their growth cones during early development.
    Hollyday M; Morgan-Carr M
    J Comp Neurol; 1995 Jun; 357(2):254-71. PubMed ID: 7665728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The locust wing hinge stretch receptors. II. Variation, alternative pathways and "mistakes" in the central arborizations.
    Altman JS; Tyrer NM
    J Comp Neurol; 1977 Apr; 172(3):431-9. PubMed ID: 838887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identified neurons in an insect embryo: the pattern of neurons innervating the metathoracic leg of the locust.
    Whitington PM; Seifert E
    J Comp Neurol; 1981 Aug; 200(2):203-12. PubMed ID: 6169745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Features of the receptors of the alar system of locusts which have lost their ability to fly].
    Kniazeva NI
    Arkh Anat Gistol Embriol; 1986 Feb; 90(2):33-9. PubMed ID: 3707362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of wing sensory axons in the central nervous system of Drosophila during metamorphosis.
    Whitlock KE; Palka J
    J Neurobiol; 1995 Feb; 26(2):189-204. PubMed ID: 7535838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal specificity and its development in the Drosophila wing disc and its derivatives.
    Palka J
    J Neurobiol; 1993 Jun; 24(6):788-802. PubMed ID: 8331339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The insecticide pymetrozine selectively affects chordotonal mechanoreceptors.
    Ausborn J; Wolf H; Mader W; Kayser H
    J Exp Biol; 2005 Dec; 208(Pt 23):4451-66. PubMed ID: 16339866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanoreceptive origin of insect tympanal organs: a comparative study of similar nerves in tympanate and atympanate moths.
    Yack JE; Fullard JH
    J Comp Neurol; 1990 Oct; 300(4):523-34. PubMed ID: 2273092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Firing properties of the soma and axon of the abdominal stretch receptor neurons in the crayfish (Astacus leptodactylus).
    Purali N
    Gen Physiol Biophys; 2002 Jun; 21(2):205-26. PubMed ID: 12236549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of central axon terminals of putative stretch receptors in leeches.
    Fan RJ; Friesen WO
    J Comp Neurol; 2006 Jan; 494(2):290-302. PubMed ID: 16320239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological development of a monosynaptic connection involved in an adult insect behavior.
    Heathcote RD
    J Comp Neurol; 1980 May; 191(2):155-66. PubMed ID: 7410589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.