These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 728795)

  • 21. Response growth with sound level in auditory-nerve fibers after noise-induced hearing loss.
    Heinz MG; Young ED
    J Neurophysiol; 2004 Feb; 91(2):784-95. PubMed ID: 14534289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Initial discharge latency and threshold considerations for some neurons in cochlear nuclear complex of the cat.
    Kitzes LM; Gibson MM; Rose JE; Hind JE
    J Neurophysiol; 1978 Sep; 41(5):1165-82. PubMed ID: 212537
    [No Abstract]   [Full Text] [Related]  

  • 23. Cochlear fibre rate--intensity functions: no evidence for basilar membrane nonlinearities.
    Palmer AR; Evans EF
    Hear Res; 1980 Jun; 2(3-4):319-26. PubMed ID: 7410235
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theoretical dependence of cochlear fibre discharge rate versus intensity function on frequency: evidence for basilar membrane nonlinearity?
    Pick GF
    Hear Res; 1980 Jun; 2(3-4):559-64. PubMed ID: 7410261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activity patterns of neurons in the peripheral auditory system of some reptiles.
    Manley GA
    Brain Behav Evol; 1974; 10(1-3):244-56. PubMed ID: 4455354
    [No Abstract]   [Full Text] [Related]  

  • 26. In defence of the travelling wave concept.
    Tonndorf J
    J Otolaryngol; 1980 Aug; 9(4):316-28. PubMed ID: 7420522
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of a low-frequency tone on the sensitivity of primary auditory neurons: two fiber populations.
    Romahn G; Boerger G
    Exp Brain Res; 1978 Jul; 32(3):423-8. PubMed ID: 680049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synchronous responses of the primary auditory fibers to the onset of tone burst and their relation to compound action potentials.
    Ozdamar O; Dallos P
    Brain Res; 1978 Oct; 155(1):169-75. PubMed ID: 688009
    [No Abstract]   [Full Text] [Related]  

  • 29. Using Neural Response Telemetry to Monitor Physiological Responses to Acoustic Stimulation in Hybrid Cochlear Implant Users.
    Abbas PJ; Tejani VD; Scheperle RA; Brown CJ
    Ear Hear; 2017; 38(4):409-425. PubMed ID: 28085738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relations between frequency selectivity and two-tone rate suppression in lizard cochlear-nerve fibers.
    Holton T
    Hear Res; 1980 Jan; 2(1):21-38. PubMed ID: 7351389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frequency dependence of synchronization of cochlear nerve fibers in the alligator lizard: evidence for a cochlear origin of timing and non-timing neural pathways.
    Rose C; Weiss TF
    Hear Res; 1988 May; 33(2):151-65. PubMed ID: 3397325
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional recovery in the avian ear after hair cell regeneration.
    Smolders JW
    Audiol Neurootol; 1999; 4(6):286-302. PubMed ID: 10516389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cochlear mechanics: nonlinear behavior in two-tone responses as reflected in cochlear-nerve-fiber responses and in ear-canal sound pressure.
    Kim DO; Molnar CE; Matthews JW
    J Acoust Soc Am; 1980 May; 67(5):1704-21. PubMed ID: 7372925
    [No Abstract]   [Full Text] [Related]  

  • 34. Mass Potentials Recorded at the Round Window Enable the Detection of Low Spontaneous Rate Fibers in Gerbil Auditory Nerve.
    Batrel C; Huet A; Hasselmann F; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    PLoS One; 2017; 12(1):e0169890. PubMed ID: 28085968
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wever and Lawrence revisited: effects of nulling basilar membrane movement on concomitant whole-nerve action potential.
    Offut G
    J Aud Res; 1986 Jan; 26(1):43-54. PubMed ID: 3610990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-tone suppression of inner hair cell and basilar membrane responses in the guinea pig.
    Nuttall AL; Dolan DF
    J Acoust Soc Am; 1993 Jan; 93(1):390-400. PubMed ID: 8423256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cochlear anatomy of the alligator lizard.
    Mulroy MJ
    Brain Behav Evol; 1974; 10(1-3):69-87. PubMed ID: 4141920
    [No Abstract]   [Full Text] [Related]  

  • 38. Inner-ear morphology of the New Zealand kiwi (Apteryx mantelli) suggests high-frequency specialization.
    Corfield JR; Kubke MF; Parsons S; Köppl C
    J Assoc Res Otolaryngol; 2012 Oct; 13(5):629-39. PubMed ID: 22772440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cochlear ganglion cells in the alligator lizard.
    Mulroy MJ
    Hear Res; 1983 Oct; 12(1):121-37. PubMed ID: 6662824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phase of neural excitation relative to basilar membrane motion in the organ of Corti: theoretical considerations.
    Andoh M; Nakajima C; Wada H
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1554-65. PubMed ID: 16240816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.