These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 728802)

  • 21. Schwann cells transplanted in the lateral ventricles prevent the functional and anatomical effects of monocular deprivation in the rat.
    Pizzorusso T; Fagiolini M; Fabris M; Ferrari G; Maffei L
    Proc Natl Acad Sci U S A; 1994 Mar; 91(7):2572-6. PubMed ID: 8146156
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visual deprivation does not affect the orientation and direction sensitivity of relay cells in the lateral geniculate nucleus of the cat.
    Zhou Y; Leventhal AG; Thompson KG
    J Neurosci; 1995 Jan; 15(1 Pt 2):689-98. PubMed ID: 7823172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efferent neurons and suspected interneurons in binocular visual cortex of the awake rabbit: receptive fields and binocular properties.
    Swadlow HA
    J Neurophysiol; 1988 Apr; 59(4):1162-87. PubMed ID: 3373273
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of monocular deprivation on the visual latency of geniculate X- and Y-cells in the cat.
    Sestokas AK; Lehmkuhle S
    Brain Res; 1986 Nov; 395(1):93-5. PubMed ID: 3779434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physiological effects of unequal alternating monocular exposure.
    Tieman DG; McCall MA; Hirsch HV
    J Neurophysiol; 1983 Mar; 49(3):804-18. PubMed ID: 6834100
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of progressively longer durations of monocular deprivation on development of visuocortical receptive fields in the rabbit.
    Crabtree JW; Chow KL; Conlee J; Ostrach LH; Grobstein P
    Neurosci Lett; 1981 Oct; 26(1):61-5. PubMed ID: 7290539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative studies of cell size in the cat's dorsal lateral geniculate nucleus following visual deprivation.
    Hickey TL; Spear PD; Kratz KE
    J Comp Neurol; 1977 Mar; 172(2):265-81. PubMed ID: 838882
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Orientation bias of the extraclassical receptive field of the relay cells in the cat's dorsal lateral geniculate nucleus.
    Sun C; Chen X; Huang L; Shou T
    Neuroscience; 2004; 125(2):495-505. PubMed ID: 15062991
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A correlation of receptive field properties with conduction velocity of cells in the rat's retino-geniculo-cortical pathway.
    Hale PT; Sefton AJ; Dreher B
    Exp Brain Res; 1979 May; 35(3):425-42. PubMed ID: 456451
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Is there an effect of monocular deprivation on the proportions of X and Y cells in the cat lateral geniculate nucleus?
    Shapley R; So YT
    Exp Brain Res; 1980; 39(1):41-8. PubMed ID: 7379885
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retinotopic organization in the dorsal lateral geniculate nucleus of the tammar wallaby (Macropus eugenii).
    Wye-Dvorak J; Levick WR; Mark RF
    J Comp Neurol; 1987 Sep; 263(2):198-213. PubMed ID: 3667976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatiotemporal receptive field structure of neurons in the lateral geniculate nucleus of binocularly deprived cats.
    Michalski A; Wróbel A
    Acta Neurobiol Exp (Wars); 1986; 46(5-6):261-79. PubMed ID: 3565099
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Postnatal development of the dorsal lateral geniculate nucleus in the normal and enucleated albino mouse.
    Heumann D; Rabinowicz T
    Exp Brain Res; 1980; 38(1):75-85. PubMed ID: 7351229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The development of soma size changes in the C-laminae of the cat lateral geniculate nucleus following monocular deprivation.
    Murakami DM; Wilson PD
    Brain Res; 1987 Oct; 432(2):215-24. PubMed ID: 3676838
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of monocular deprivation in the lateral geniculate nucleus of the cat: an analysis of evoked potentials.
    Mitzdorf U; Neumann G
    J Physiol; 1980 Jul; 304():221-30. PubMed ID: 7441535
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of early periods of monocular deprivation and reverse lid suture on the development of Cat-301 immunoreactivity in the dorsal lateral geniculate nucleus (dLGN) of the cat.
    Kind PC; Beaver CJ; Mitchell DE
    J Comp Neurol; 1995 Sep; 359(4):523-36. PubMed ID: 7499545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiological and morphological changes in cells of the lateral geniculate nucleus in monocularly-deprived and reverse-sutured cats.
    Hoffman KP; Hollander H
    J Comp Neurol; 1978 Jan; 177(1):145-57. PubMed ID: 618437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of sleep deprivation on the postnatal development of visual-deprived cells in the cat's lateral geniculate nucleus.
    Pompeiano O; Pompeiano M; Corvaja N
    Arch Ital Biol; 1995 Dec; 134(1):121-40. PubMed ID: 8919197
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dependence of cytochrome oxidase activity in the rat lateral geniculate nucleus on retinal innervation.
    Land PW
    J Comp Neurol; 1987 Aug; 262(1):78-89. PubMed ID: 3040814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Evoked responses of the lateral geniculate body to photic stimulation in intact and visually deprived rabbits].
    Pisareva NL
    Neirofiziologiia; 1978; 10(5):504-9. PubMed ID: 703903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.