These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 7288025)

  • 1. The effect of occluded ear impedances on the eardrum SPL produced by hearing aids.
    Gilman S; Dirks DD; Stern R
    J Acoust Soc Am; 1981 Aug; 70(2):370-86. PubMed ID: 7288025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustics of ear canal measurement of eardrum SPL in simulators.
    Gilman S; Dirks DD
    J Acoust Soc Am; 1986 Sep; 80(3):783-93. PubMed ID: 3760332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A probe earmold system for measuring eardrum SPL under hearing-aid conditions.
    Gilman S; Dirks DD
    Scand Audiol; 1984; 13(1):15-22. PubMed ID: 6719011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new method to estimate sound energy entering the middle ear.
    Chen S; Deng J; Bian L; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():29-32. PubMed ID: 24109616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basic acoustic considerations of ear canal probe measurements.
    Dirks DD; Kincaid GE
    Ear Hear; 1987 Oct; 8(5 Suppl):60S-67S. PubMed ID: 3678652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occluded-ear simulator with variable acoustic properties.
    Egolf DP; Kennedy WA; Larson VD
    J Acoust Soc Am; 1992 May; 91(5):2813-23. PubMed ID: 1629475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of normal and pathologic eardrum impedance on sound pressure in the aided ear canal: a computer simulation.
    Egolf DP; Feth LL; Cooper WA; Franks JR
    J Acoust Soc Am; 1985 Oct; 78(4):1281-5. PubMed ID: 3840499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pure-Tone Audiometry With Forward Pressure Level Calibration Leads to Clinically-Relevant Improvements in Test-Retest Reliability.
    Lapsley Miller JA; Reed CM; Robinson SR; Perez ZD
    Ear Hear; 2018; 39(5):946-957. PubMed ID: 29470259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic mechanisms that determine the ear-canal sound pressures generated by earphones.
    Voss SE; Rosowski JJ; Shera CA; Peake WT
    J Acoust Soc Am; 2000 Mar; 107(3):1548-65. PubMed ID: 10738809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using average correction factors to improve the estimated sound pressure level near the tympanic membrane.
    LaRae Recker K; Zhang T; Lin W
    J Am Acad Audiol; 2012 Oct; 23(9):733-50. PubMed ID: 23072965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative loudness perception of low and high frequency sounds in the open and occluded ear.
    Keidser G; Katsch R; Dillon H; Grant F
    J Acoust Soc Am; 2000 Jun; 107(6):3351-7. PubMed ID: 10875380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Outer ear canal sound pressure and bone vibration measurement in SSD and CHL patients using a transcutaneous bone conduction instrument.
    Ghoncheh M; Lilli G; Lenarz T; Maier H
    Hear Res; 2016 Oct; 340():161-168. PubMed ID: 26723102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maturation of the occlusion effect: a bone conduction auditory steady state response study in infants and adults with normal hearing.
    Small SA; Hu N
    Ear Hear; 2011; 32(6):708-19. PubMed ID: 21617531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using a one-dimensional finite-element approximation of Webster's horn equation to estimate individual ear canal acoustic transfer from input impedances.
    Wulbusch N; Roden R; Chernov A; Blau M
    J Acoust Soc Am; 2023 May; 153(5):2826. PubMed ID: 37163702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [In-situ measurement as necessary component of hearing aid fitting].
    BrĂ¼gel FJ; Schorn K
    Laryngorhinootologie; 1991 Nov; 70(11):616-9. PubMed ID: 1755901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic effects in in-the-ear hearing aid response: results from a computer simulation.
    Kates JM
    Ear Hear; 1988 Jun; 9(3):119-32. PubMed ID: 3410175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of eardrum acoustic pressure and of ear canal length from remote points in the canal.
    Chan JC; Geisler CD
    J Acoust Soc Am; 1990 Mar; 87(3):1237-47. PubMed ID: 2324390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Middle ear pathology can affect the ear-canal sound pressure generated by audiologic earphones.
    Voss SE; Rosowski JJ; Merchant SN; Thornton AR; Shera CA; Peake WT
    Ear Hear; 2000 Aug; 21(4):265-74. PubMed ID: 10981602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A technique for simulating the amplifier-to-eardrum transfer function of an in situ hearing aid.
    Egolf DP; Haley BT; Howell HC; Larson VD
    J Acoust Soc Am; 1988 Jul; 84(1):1-10. PubMed ID: 3411037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.