These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 7289561)

  • 61. Central circulation during exposure to 7-day microgravity (head-down tilt, immersion, space flight).
    Katkov VE; Kakurin LI; Chestukhin VV; Kirsch K
    Physiologist; 1987 Feb; 30(1 Suppl):S36-41. PubMed ID: 3562617
    [No Abstract]   [Full Text] [Related]  

  • 62. [Characteristics of human urinary excretion of vitamins C, B1 and B6 during 182-day head-down tilt hypokinesia].
    Bychkov VP; Korshunova VA
    Kosm Biol Aviakosm Med; 1981; 15(5):46-9. PubMed ID: 7289563
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of head down tilt for 10 days on the compliance of the lower limb.
    Buckey JC; Lane LD; Plath G; Gaffney FA; Baisch F; Blomqvist CG
    Physiologist; 1990 Feb; 33(1 Suppl):S167-8. PubMed ID: 2371328
    [No Abstract]   [Full Text] [Related]  

  • 64. [Effect of water-salt dietary supplements on tolerance to head-pelvis acceleration after 7 days of "dry" immersion and during normal motor activity].
    Kokova NI
    Kosm Biol Aviakosm Med; 1984; 18(4):33-7. PubMed ID: 6482360
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Energy expenditure during antiorthostatic bed rest (simulated microgravity).
    Gretebeck RJ; Schoeller DA; Gibson EK; Lane HW
    J Appl Physiol (1985); 1995 Jun; 78(6):2207-11. PubMed ID: 7665419
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Exposure of human lymphocytes and lymphoblastoid cells to simulated microgravity strongly affects energy metabolism and DNA repair.
    Degan P; Sancandi M; Zunino A; Ottaggio L; Viaggi S; Cesarone F; Pippia P; Galleri G; Abbondandolo A
    J Cell Biochem; 2005 Feb; 94(3):460-9. PubMed ID: 15534877
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Thermoregulation under simulated weightlessness].
    Qiu M; Liu W; Liu G; Wen J; Liu G; Chang S
    Space Med Med Eng (Beijing); 1997 Jun; 10(3):210-3. PubMed ID: 11540574
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effects of simulated weightlessness upon the cardiovascular system.
    Howard P; Ernsting J; Denison DM; Fryer DI; Glaister DH; Byford GH
    Aerosp Med; 1967 Jun; 38(6):551-63. PubMed ID: 6034925
    [No Abstract]   [Full Text] [Related]  

  • 69. Human adaptation to simulated gravitational fields.
    Shulzhenko EB; Vil-Vilyams IF; Panfilov VE
    Acta Astronaut; 1982 Mar; 9(3):173-4. PubMed ID: 11541687
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Relatively shorter but intensive isotonic exercise in legs prevented the decrease in maximal aerobic power after 20 days of head down tilt bed rest in man.
    Suzuki Y; Takenaka K; Haruna Y; Akima H; Fukunaga T; Kawakubo K; Gunji A
    J Gravit Physiol; 1999 Jul; 6(1):P117-8. PubMed ID: 11542984
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effect of simulated weightlessness on phase II drug metabolism in the rat.
    Brunner LJ; Bai S; Abdus-Salaam H
    Aviat Space Environ Med; 2000 Sep; 71(9):899-903. PubMed ID: 11001342
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cardiac output during physical exercises following real and simulated space flight.
    Katkovsky BS; Pomyotov YD
    Life Sci Space Res; 1976; 14():301-5. PubMed ID: 11977286
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Simulated weightlessness: effects of bioenergetic balance.
    Jordan JP; Sykes HA; Crownover JC; Schatte CL; Simmons JB; Jordan DP
    Aviat Space Environ Med; 1980 Feb; 51(2):132-6. PubMed ID: 7362558
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of weightlessness as simulated by total body immersion upon human response to positive acceleration.
    BENSON VG; BECKMAN EL; COBURN KR; CHAMBERS RM
    Aerosp Med; 1962 Feb; 33():198-203. PubMed ID: 13867362
    [No Abstract]   [Full Text] [Related]  

  • 75. Study of space perception functioning during simulation of certain space flight factors.
    Yakovleva IY; Bokhov BB; Kornilova LN
    Life Sci Space Res; 1976; 14():295-300. PubMed ID: 12678114
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Changes in myocardial contractility and contractile proteins after four weeks of simulated [correction of simulate] weightlessness in rats.
    Yu ZB; Bao JX; Ma J; Zhang LF; Jin JP
    J Gravit Physiol; 2000 Jul; 7(2):P147-8. PubMed ID: 12697490
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Human tolerance to acceleration after exposure to weightlessness.
    Kotovskaya AR
    Life Sci Space Res; 1976; 14():129-35. PubMed ID: 11977270
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Heart volume during short-term head-down tilt (-6 degrees) in comparison with horizontal body position.
    Knitelius H; Stegemann J
    Aviat Space Environ Med; 1987 Sep; 58(9 Pt 2):A61-3. PubMed ID: 3675506
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Dynamic indices of erythrocyte bioenergetics in exposure to regional hypothermia during head-down tilt hypokinesia (-8 degrees)].
    Ivchenko VF; Stazhadze LL; Romanov AN; Omanidze DO
    Kosm Biol Aviakosm Med; 1988; 22(2):83-5. PubMed ID: 3379909
    [No Abstract]   [Full Text] [Related]  

  • 80. [Features of humoral regulation of metabolism during modelling of space flight factors].
    Kalandarov S; Bychkov VP; Frenkel' ID; Proskurova GI
    Kosm Biol Aviakosm Med; 1986; 20(1):25-8. PubMed ID: 3951174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.