These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 7290202)
1. Change in a specific phosphoprotein band following associative learning in Hermissenda. Neary JT; Crow T; Alkon DL Nature; 1981 Oct; 293(5834):658-60. PubMed ID: 7290202 [No Abstract] [Full Text] [Related]
2. Retention of an associative behavioral change in Hermissenda. Crow TJ; Alkon DL Science; 1978 Sep; 201(4362):1239-41. PubMed ID: 694512 [TBL] [Abstract][Full Text] [Related]
3. Associative learning in a network model of Hermissenda crassicornis. II. Experiments. Werness SA; Fay SD; Blackwell KT; Vogl TP; Alkon DL Biol Cybern; 1993; 69(1):19-28. PubMed ID: 8334187 [TBL] [Abstract][Full Text] [Related]
4. Protein phosphorylation and associative learning in Hermissenda. Neary JT; Alkon DL Acta Biochim Biophys Hung; 1986; 21(3):159-76. PubMed ID: 2432746 [TBL] [Abstract][Full Text] [Related]
5. Specific high molecular weight mRNAs induced by associative learning in Hermissenda. Nelson TJ; Alkon DL Proc Natl Acad Sci U S A; 1990 Jan; 87(1):269-73. PubMed ID: 2296586 [TBL] [Abstract][Full Text] [Related]
6. In vitro associative conditioning of Hermissenda: cumulative depolarization of type B photoreceptors and short-term associative behavioral changes. Farley J; Alkon DL J Neurophysiol; 1987 Jun; 57(6):1639-68. PubMed ID: 3598626 [TBL] [Abstract][Full Text] [Related]
7. Input and output changes of an identified neural pathway are correlated with associative learning in Hermissenda. Goh Y; Lederhendler I; Alkon DL J Neurosci; 1985 Feb; 5(2):536-43. PubMed ID: 3973682 [TBL] [Abstract][Full Text] [Related]
8. Motor correlates of phototaxis and associative learning in Hermissenda crassicornis. Richards WG; Farley J Brain Res Bull; 1987 Aug; 19(2):175-89. PubMed ID: 3664278 [TBL] [Abstract][Full Text] [Related]
9. Correlated receptor and motorneuron changes during retention of associative learning of Hermissenda crassicornis. Takeda T; Alkon DL Comp Biochem Physiol A Comp Physiol; 1982; 73(2):151-7. PubMed ID: 6128102 [TBL] [Abstract][Full Text] [Related]
10. Primary changes of membrane currents during retention of associative learning. Alkon DL; Lederhendler I; Shoukimas JJ Science; 1982 Feb; 215(4533):693-5. PubMed ID: 7058334 [TBL] [Abstract][Full Text] [Related]
11. Neural correlates of associative training in Hermissenda. Alkon DL J Gen Physiol; 1975 Jan; 65(1):46-56. PubMed ID: 1110353 [TBL] [Abstract][Full Text] [Related]
12. Cellular and molecular analysis of associative learning and memory in Hermissenda. Crow T Trends Neurosci; 1988 Apr; 11(4):136-47. PubMed ID: 2469181 [No Abstract] [Full Text] [Related]
13. Molecular mechanisms of associative learning in mammal and mollusc. Bank B; Nelson T; Alkon DL J Physiol (Paris); 1988-1989; 83(3):119-25. PubMed ID: 2483171 [TBL] [Abstract][Full Text] [Related]
14. Time-dependent increase in protein phosphorylation following one-trial enhancement in Hermissenda. Crow T; Siddiqi V; Zhu Q; Neary JT J Neurochem; 1996 Apr; 66(4):1736-41. PubMed ID: 8627332 [TBL] [Abstract][Full Text] [Related]
15. Neurophysiological substrates of context conditioning in Hermissenda suggest a temporally invariant form of activity-dependent neuronal facilitation. Talk AC; Muzzio IA; Matzel LD Neurobiol Learn Mem; 1999 Sep; 72(2):95-117. PubMed ID: 10438650 [TBL] [Abstract][Full Text] [Related]
16. Ryanodine receptor modulation of in vitro associative learning in Hermissenda crassicornis. Blackwell KT; Alkon DL Brain Res; 1999 Mar; 822(1-2):114-25. PubMed ID: 10082889 [TBL] [Abstract][Full Text] [Related]
17. Molecular and biophysical steps in the storage of associative memory. Alkon DL; Collin C; Ito E; Lee CJ; Nelson TJ; Oka K; Sakakibara M; Schreurs BG; Yoshioka T Ann N Y Acad Sci; 1993 Dec; 707():500-4. PubMed ID: 9137606 [No Abstract] [Full Text] [Related]
18. Learning selectively increases protein kinase C substrate phosphorylation in specific regions of the chick brain. Sheu FS; McCabe BJ; Horn G; Routtenberg A Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2705-9. PubMed ID: 8464879 [TBL] [Abstract][Full Text] [Related]
19. In vitro expression of in vivo learning by an isolated molluscan CNS. Gelperin A; Culligan N Brain Res; 1984 Jun; 304(2):207-13. PubMed ID: 6744040 [TBL] [Abstract][Full Text] [Related]
20. Primary changes of voltage responses during retention of associative learning. West A; Barnes E; Alkon DL J Neurophysiol; 1982 Nov; 48(5):1243-55. PubMed ID: 6816909 [No Abstract] [Full Text] [Related] [Next] [New Search]