These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

568 related articles for article (PubMed ID: 7293)

  • 21. Role of the divalent metal cation in the pyruvate oxidase reaction.
    Blake R; O'Brien TA; Gennis RB; Hager LP
    J Biol Chem; 1982 Aug; 257(16):9605-11. PubMed ID: 6286628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Steady-state kinetic studies of the metal ion-dependent decarboxylation of oxalacetate catalyzed by pyruvate kinase.
    Kiick DM; Cleland WW
    Arch Biochem Biophys; 1989 May; 270(2):647-54. PubMed ID: 2705784
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The proton transfer reactions catalyzed by yeast pyruvate kinase.
    Ford SR; Robinson JL
    Biochim Biophys Acta; 1976 Jun; 438(1):119-30. PubMed ID: 7315
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformational changes in yeast pyruvate kinase studied by 205Tl+ NMR.
    Loria JP; Nowak T
    Biochemistry; 1998 May; 37(19):6967-74. PubMed ID: 9578583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetic resonance studies of the interaction of Co2+ and phosphoenolpyruvate with pyruvate kinase.
    Melamud E; Mildvan AS
    J Biol Chem; 1975 Oct; 250(20):8193-201. PubMed ID: 1236850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arrangement and conformations of substrates at the active site of pyruvate kinase from model building studies based on magnetic resonance data.
    Mildvan AS; Sloan DL; Fung CH; Gupta RK; Melamud E
    J Biol Chem; 1976 Apr; 251(8):2431-4. PubMed ID: 944185
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autophosphorylation of phosphorylase kinase. Divalent metal cation and nucleotide dependency.
    Hallenbeck PC; Walsh DA
    J Biol Chem; 1983 Nov; 258(22):13493-501. PubMed ID: 6643437
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mandelate racemase from Pseudomonas putida. Magnetic resonance and kinetic studies of the mechanism of catalysis.
    Maggio ET; Kenyon GL; Mildvan AS; Hegeman GD
    Biochemistry; 1975 Mar; 14(6):1131-9. PubMed ID: 164210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vanadyl(IV) complexes with pyruvate kinase: activation of the enzyme and electron paramagnetic resonance properties of ternary complexes with the protein.
    Lord KA; Reed GH
    Arch Biochem Biophys; 1990 Aug; 281(1):124-31. PubMed ID: 2166476
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation.
    Brown DA; Cook RA
    Biochemistry; 1981 Apr; 20(9):2503-12. PubMed ID: 7016178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel nuclear relaxation approach for estimating distance between enzyme- and nucleotide-bound metal ions at the catalytic site of pyruvate kinase.
    Gupta RK
    J Biol Chem; 1977 Aug; 252(15):5183-5. PubMed ID: 195940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetic resonance studies of the spatial arrangement of glucose-6-phosphate and chromium (III)-adenosine diphosphate at the catalytic site of hexokinase.
    Petersen RL; Gupta BK
    Biophys J; 1979 Jul; 27(1):1-14. PubMed ID: 233578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stereospecificity of the metal--adenosine 5'-triphosphate complex in reactions of muscle pyruvate kinase.
    Dunaway-Mariano D; Benovic JL; Cleland WW; Gupta RK; Mildvan AS
    Biochemistry; 1979 Oct; 18(20):4347-54. PubMed ID: 486426
    [No Abstract]   [Full Text] [Related]  

  • 34. Affinity labeling of rabbit muscle pyruvate kinase by 5'-p-fluorosulfonylbenzoyladenosine.
    Wyatt JL; Colman RF
    Biochemistry; 1977 Apr; 16(7):1333-42. PubMed ID: 14678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activation and inhibition of rabbit muscle pyruvate kinase by transition-metal ions.
    Ainsworth S; Macfarlane N
    Biochem J; 1975 Jan; 145(1):63-71. PubMed ID: 1238084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetic resonance measurements of intersubstrate distances at the active site of protein kinase using substitution-inert cobalt(III) and chromium(III) complexes of adenosine 5'-(beta, gamma-methylenetriphosphate).
    Granot J; Mildvan AS; Bramson HN; Kaiser ET
    Biochemistry; 1980 Jul; 19(15):3537-43. PubMed ID: 6893273
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural changes at the active site of pyruvate kinase during activation and catalysis.
    Nowak T
    J Biol Chem; 1978 Mar; 253(6):1998-2004. PubMed ID: 564901
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformational changes required for pyruvate kinase activity as modulated by monovalent cations.
    Nowak T
    J Biol Chem; 1976 Jan; 251(1):73-8. PubMed ID: 172512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Divalent metal ions influence catalysis and active-site accessibility in the cAMP-dependent protein kinase.
    Adams JA; Taylor SS
    Protein Sci; 1993 Dec; 2(12):2177-86. PubMed ID: 8298463
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Remarkable affinity and selectivity for Cs+ and uranyl (UO22+) binding to the manganese site of the apo-water oxidation complex of photosystem II.
    Ananyev GM; Murphy A; Abe Y; Dismukes GC
    Biochemistry; 1999 Jun; 38(22):7200-9. PubMed ID: 10353831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.