These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 7294825)

  • 21. Antipyrine as a probe for human oxidative drug metabolism: identification of the cytochrome P450 enzymes catalyzing 4-hydroxyantipyrine, 3-hydroxymethylantipyrine, and norantipyrine formation.
    Engel G; Hofmann U; Heidemann H; Cosme J; Eichelbaum M
    Clin Pharmacol Ther; 1996 Jun; 59(6):613-23. PubMed ID: 8681486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The chloride-activated peroxidation of catechol as a mechanistic probe of chloroperoxidase reactions. Competitive activation as evidence for a catalytic chloride binding site on compound I.
    Libby RD; Rotberg NS; Emerson JT; White TC; Yen GM; Friedman SH; Sun NS; Goldowski R
    J Biol Chem; 1989 Sep; 264(26):15284-92. PubMed ID: 2768264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Peroxidase-catalyzed halogenation.
    Morrison M; Schonbaum GR
    Annu Rev Biochem; 1976; 45():861-88. PubMed ID: 786162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thianthrene 5-oxide as a probe of the electrophilicity of hemoprotein oxidizing species.
    Alvarez JC; Ortiz de Montellano PR
    Biochemistry; 1992 Sep; 31(35):8315-22. PubMed ID: 1525169
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peroxide oxidation of indole to oxindole by chloroperoxidase catalysis.
    Corbett MD; Chipko BR
    Biochem J; 1979 Nov; 183(2):269-76. PubMed ID: 43132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An evidence of the peroxidase-dependent oxygen transfer from hydrogen peroxide to sulfides.
    Kobayashi S; Nakano M; Goto T; Kimura T; Schaap AP
    Biochem Biophys Res Commun; 1986 Feb; 135(1):166-71. PubMed ID: 3954766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetics of the oxidation of ascorbic acid, ferrocyanide and p-phenolsulfonic acid by chloroperoxidase compounds I and II.
    Lambeir AM; Dunford HB; Pickard MA
    Eur J Biochem; 1987 Feb; 163(1):123-7. PubMed ID: 3816791
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro bioactivation of phenytoin to a reactive free radical intermediate by prostaglandin synthetase, horseradish peroxidase, and thyroid peroxidase.
    Kubow S; Wells PG
    Mol Pharmacol; 1989 Apr; 35(4):504-11. PubMed ID: 2539558
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial enzymes in halogenation processes.
    Wiesner W; Otto MK; Kulbe KD
    Ann N Y Acad Sci; 1990; 589():705-11. PubMed ID: 2113372
    [No Abstract]   [Full Text] [Related]  

  • 30. Mechanism of azide binding to chloroperoxidase and horseradish peroxidase: use of an iodine laser temperature-jump apparatus.
    Holzwarth JF; Meyer F; Pickard M; Dunford HB
    Biochemistry; 1988 Aug; 27(17):6628-33. PubMed ID: 3219358
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms of cytochrome P450 and peroxidase-catalyzed xenobiotic metabolism.
    Hollenberg PF
    FASEB J; 1992 Jan; 6(2):686-94. PubMed ID: 1537457
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enantioselective oxidations of sulfides catalyzed by chloroperoxidase.
    Colonna S; Gaggero N; Manfredi A; Casella L; Gullotti M; Carrea G; Pasta P
    Biochemistry; 1990 Nov; 29(46):10465-8. PubMed ID: 2271658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Free radical formation in the oxidation of malondialdehyde and acetylacetone by peroxidase enzymes.
    Mottley C; Robinson RE; Mason RP
    Arch Biochem Biophys; 1991 Aug; 289(1):153-60. PubMed ID: 1654844
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Compound I formation is a partially rate-limiting process in chloroperoxidase-catalyzed bromination reactions.
    Libby RD; Rotberg NS
    J Biol Chem; 1990 Sep; 265(25):14808-11. PubMed ID: 2394699
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Antipyrine and microsomal enzymes clearance].
    Escartin P; Rossi L; Alvarez Cienfuegos J; Rodríguez Montes JA; Garrido A; Abréu L; García González MA
    Rev Esp Enferm Apar Dig; 1980 May; 57(5):539-42. PubMed ID: 7394252
    [No Abstract]   [Full Text] [Related]  

  • 36. Ligand and halide binding properties of chloroperoxidase: peroxidase-type active site heme environment with cytochrome P-450 type endogenous axial ligand and spectroscopic properties.
    Sono M; Dawson JH; Hall K; Hager LP
    Biochemistry; 1986 Jan; 25(2):347-56. PubMed ID: 3955002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stereoselectivity of chloroperoxidase-dependent halogenation.
    Ramakrishnan K; Oppenhuizen ME; Saunders S; Fisher J
    Biochemistry; 1983 Jun; 22(13):3271-7. PubMed ID: 6882748
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies on the metabolism of aminopyrine, antipyrine and theophylline using monoclonal antibodies to cytochrome P-450 isozymes purified from rat liver.
    Slusher LB; Park SS; Gelboin HV; Vesell ES
    Biochem Pharmacol; 1987 Jul; 36(14):2359-67. PubMed ID: 2440440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oscillations in the peroxidase-oxidase reaction: a comparison of different peroxidases.
    Kummer U; Valeur KR; Baier G; Wegmann K; Olsen LF
    Biochim Biophys Acta; 1996 Apr; 1289(3):397-403. PubMed ID: 8620024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationship between metabolic clearance rate of antipyrine and hepatic microsomal drug-oxidizing enzyme activities in humans without liver disease.
    Vuitton D; Miguet JP; Camelot G; Delafin C; Joanne C; Bechtel P; Gillet M; Carayon P
    Gastroenterology; 1981 Jan; 80(1):112-8. PubMed ID: 7450397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.