BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7295176)

  • 21. Ascorbic acid reduces noise-induced nitric oxide production in the guinea pig ear.
    Heinrich UR; Fischer I; Brieger J; Rümelin A; Schmidtmann I; Li H; Mann WJ; Helling K
    Laryngoscope; 2008 May; 118(5):837-42. PubMed ID: 18197132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptomic analysis and ednrb expression in cochlear intermediate cells reveal developmental differences between inner ear and skin melanocytes.
    Renauld JM; Davis W; Cai T; Cabrera C; Basch ML
    Pigment Cell Melanoma Res; 2021 May; 34(3):585-597. PubMed ID: 33484097
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Age-dependent changes in the expression of klotho protein, TRPV5 and TRPV6 in mouse inner ear.
    Takumida M; Ishibashi T; Hamamoto T; Hirakawa K; Anniko M
    Acta Otolaryngol; 2009 Dec; 129(12):1340-50. PubMed ID: 19922080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cloning and developmental expression of nonmuscle myosin IIA (Myh9) in the mammalian inner ear.
    Mhatre AN; Li J; Kim Y; Coling DE; Lalwani AK
    J Neurosci Res; 2004 May; 76(3):296-305. PubMed ID: 15079858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calbindin and S100 protein expression in the developing inner ear in mice.
    Buckiová D; Syka J
    J Comp Neurol; 2009 Apr; 513(5):469-82. PubMed ID: 19226521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of prostaglandin E receptor subtypes EP2 and EP4 in autocrine and paracrine functions of vascular endothelial growth factor in the inner ear.
    Hori R; Nakagawa T; Yamamoto N; Hamaguchi K; Ito J
    BMC Neurosci; 2010 Mar; 11():35. PubMed ID: 20219142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Apoptosis in the immune response of inner ear].
    Xu LJ; Gong SS; Wang JB; Huang X; Song P; Yin SH; Chen P; Li H
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 2004 Nov; 39(11):663-8. PubMed ID: 15835816
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustic overstimulation activates 5'-AMP-activated protein kinase through a temporary decrease in ATP level in the cochlear spiral ligament prior to permanent hearing loss in mice.
    Nagashima R; Yamaguchi T; Kuramoto N; Ogita K
    Neurochem Int; 2011 Nov; 59(6):812-20. PubMed ID: 21906645
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mercury deposition and its relationship to inner ear function in methylmercury-poisoned rats. A histological and immunohistochemical study.
    Igarashi S; Koide C; Sasaki H; Nakano Y
    Acta Otolaryngol; 1992 Sep; 112(5):773-8. PubMed ID: 1280899
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The localization and specificity of guinea pig inner ear antigenic epitopes.
    Cao MY; Gersdorff M; Deggouj N; Tomasi JP
    J Laryngol Otol; 1995 Jan; 109(1):19-23. PubMed ID: 7533202
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Noise exposure alters cyclooxygenase 1 (COX-1) and 5-lipoxygenase (5-LO) expression in the guinea pig cochlea.
    Heinrich UR; Selivanova O; Schmidtmann I; Feltens R; Brieger J; Mann WJ
    Acta Otolaryngol; 2010 Mar; 130(3):358-65. PubMed ID: 19685360
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression patterns of claudins, tight junction adhesion molecules, in the inner ear.
    Kitajiri SI; Furuse M; Morita K; Saishin-Kiuchi Y; Kido H; Ito J; Tsukita S
    Hear Res; 2004 Jan; 187(1-2):25-34. PubMed ID: 14698084
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Localization of aquaporins 1, 2, and 3 and vasopressin type 2 receptor in the mouse inner ear.
    Takumida M; Kakigi A; Egami N; Nishioka R; Anniko M
    Acta Otolaryngol; 2012 Aug; 132(8):807-13. PubMed ID: 22768909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of noise exposure on blood-labyrinth barrier in guinea pigs.
    Suzuki M; Yamasoba T; Ishibashi T; Miller JM; Kaga K
    Hear Res; 2002 Feb; 164(1-2):12-8. PubMed ID: 11950520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gentamicin ototoxicity dissociated from glucose uptake and utilization.
    Takada A; Canlon B; Schacht J
    Res Commun Chem Pathol Pharmacol; 1983 Nov; 42(2):203-12. PubMed ID: 6658186
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Apoptosis and apoptosis-related genes in experimental autoimmune inner ear disease].
    Chai L; Gao Y; Gu ZY; Ni DF
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2005 Aug; 40(8):561-5. PubMed ID: 16270868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatiotemporal expression patterns of clusterin in the mouse inner ear.
    Lee S; Shin JO; Sagong B; Kim UK; Bok J
    Cell Tissue Res; 2017 Oct; 370(1):89-97. PubMed ID: 28687930
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Developmentally-regulated coexpression of vimentin and cytokeratins in the rat inner ear.
    Kuijpers W; Tonnaer EL; Peters TA; Ramaekers FC
    Hear Res; 1992 Sep; 62(1):1-10. PubMed ID: 1385376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a drug delivery system for the inner ear using poly(amino acid)-based nanoparticles.
    Kim DK; Park SN; Park KH; Park CW; Yang KJ; Kim JD; Kim MS
    Drug Deliv; 2015 May; 22(3):367-74. PubMed ID: 24447111
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distribution of gentamicin in the guinea pig inner ear after local or systemic application.
    Imamura S; Adams JC
    J Assoc Res Otolaryngol; 2003 Jun; 4(2):176-95. PubMed ID: 12943372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.